Viewpoint invariant semantic object and scene categorization with RGB-D sensors
Understanding the semantics of objects and scenes using multi-modal RGB-D sensors serves many robotics applications. Key challenges for accurate RGB-D image recognition are the scarcity of training data, variations due to viewpoint changes and the heterogeneous nature of the data. We address these p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Springer New York LLC
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/64696/ http://irep.iium.edu.my/64696/ http://irep.iium.edu.my/64696/ http://irep.iium.edu.my/64696/20/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene_complete.pdf http://irep.iium.edu.my/64696/19/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene_scopus.pdf http://irep.iium.edu.my/64696/31/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene%20categorization%20with%20RGB-D%20sensors_WOS.pdf |
Internet
http://irep.iium.edu.my/64696/http://irep.iium.edu.my/64696/
http://irep.iium.edu.my/64696/
http://irep.iium.edu.my/64696/20/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene_complete.pdf
http://irep.iium.edu.my/64696/19/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene_scopus.pdf
http://irep.iium.edu.my/64696/31/64696_Viewpoint%20invariant%20semantic%20object%20and%20scene%20categorization%20with%20RGB-D%20sensors_WOS.pdf