Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal

This work focuses on one of the severe problem arise by the usage of amine in the removal of acid gases namely carbon dioxide (CO2) which is foaming. Foaming can cause reduction integrity of plant operation, excessive loss of absorption solvents, premature flooding, reduction in plant throughput, of...

Full description

Bibliographic Details
Main Author: Ahmad Haziq, Razali
Format: Undergraduates Project Papers
Language:English
Published: 2014
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/9249/
http://umpir.ump.edu.my/id/eprint/9249/
http://umpir.ump.edu.my/id/eprint/9249/1/cd8529.pdf
id ump-9249
recordtype eprints
spelling ump-92492015-10-12T00:03:04Z http://umpir.ump.edu.my/id/eprint/9249/ Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal Ahmad Haziq, Razali TP Chemical technology This work focuses on one of the severe problem arise by the usage of amine in the removal of acid gases namely carbon dioxide (CO2) which is foaming. Foaming can cause reduction integrity of plant operation, excessive loss of absorption solvents, premature flooding, reduction in plant throughput, off-specification of products and high absorption solvent carryover to downstream plants. Foaming tendency can be experimentally evaluated by variation of parameters, such as temperature, concentrations and type of impurities (sodium chloride, acetic acid, iron sulphide). Prior to each experiment, aqueous solutions of MDEA of different concentration are prepared by volume (for concentration parameter), the prepared solutions are heated in a temperature bath to a set temperature (for temperature parameter) and different impurities are added into the solution (for impurities parameter). Effect of all this parameters will be evaluated based on height of foam in millilitre (ml) and collapse time of foaming in seconds (s). Nitrogen gas (N2) will be use in this experiment as bubble gas. Results reveal that increase the pure MDEA concentration will decrease the foaminess. Similarly results also indicated that by increase the solution temperature will decrease the foam formation. For the investigation of foaming on temperature parameter, MDEA-Pz solution show greater to contribute on foaminess than pure MDEA solution at same amount of MDEA used. At the same amount of the impurities, iron sulphide appeared as the most influential contaminant to the foam formation, which promoted the highest foamability in any concentrations of piperazine-MDEA solution 2014-01 Undergraduates Project Papers NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/9249/1/cd8529.pdf Ahmad Haziq, Razali (2014) Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang. http://iportal.ump.edu.my/lib/item?id=chamo:84885&theme=UMP2
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Ahmad Haziq, Razali
Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
description This work focuses on one of the severe problem arise by the usage of amine in the removal of acid gases namely carbon dioxide (CO2) which is foaming. Foaming can cause reduction integrity of plant operation, excessive loss of absorption solvents, premature flooding, reduction in plant throughput, off-specification of products and high absorption solvent carryover to downstream plants. Foaming tendency can be experimentally evaluated by variation of parameters, such as temperature, concentrations and type of impurities (sodium chloride, acetic acid, iron sulphide). Prior to each experiment, aqueous solutions of MDEA of different concentration are prepared by volume (for concentration parameter), the prepared solutions are heated in a temperature bath to a set temperature (for temperature parameter) and different impurities are added into the solution (for impurities parameter). Effect of all this parameters will be evaluated based on height of foam in millilitre (ml) and collapse time of foaming in seconds (s). Nitrogen gas (N2) will be use in this experiment as bubble gas. Results reveal that increase the pure MDEA concentration will decrease the foaminess. Similarly results also indicated that by increase the solution temperature will decrease the foam formation. For the investigation of foaming on temperature parameter, MDEA-Pz solution show greater to contribute on foaminess than pure MDEA solution at same amount of MDEA used. At the same amount of the impurities, iron sulphide appeared as the most influential contaminant to the foam formation, which promoted the highest foamability in any concentrations of piperazine-MDEA solution
format Undergraduates Project Papers
author Ahmad Haziq, Razali
author_facet Ahmad Haziq, Razali
author_sort Ahmad Haziq, Razali
title Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
title_short Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
title_full Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
title_fullStr Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
title_full_unstemmed Foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
title_sort foaming behaviour of an aqueous solution of n-methyldiethanolamine (mdea) and aqueous solution of piperazine (pz)-n-methyldiethanolamine (mdea) for the carbon dioxide removal
publishDate 2014
url http://umpir.ump.edu.my/id/eprint/9249/
http://umpir.ump.edu.my/id/eprint/9249/
http://umpir.ump.edu.my/id/eprint/9249/1/cd8529.pdf
first_indexed 2023-09-18T22:07:38Z
last_indexed 2023-09-18T22:07:38Z
_version_ 1777414814528700416