Antibiotic purification by using IMA adsorbents

The intensity to achieve highly efficient and economical separation process can be seen in developing of various methods in the recent year. While in purification of antibiotic there are many methods use such as using High performance liquid chromatography (HPLC) and Counter-current chromatography (...

Full description

Bibliographic Details
Main Author: Abdul Rahim, Mohd Yusoff
Format: Undergraduates Project Papers
Language:English
Published: 2009
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/852/
http://umpir.ump.edu.my/id/eprint/852/1/Abdul_Rahim_Mohd_Yusoff.pdf
Description
Summary:The intensity to achieve highly efficient and economical separation process can be seen in developing of various methods in the recent year. While in purification of antibiotic there are many methods use such as using High performance liquid chromatography (HPLC) and Counter-current chromatography (CCC). The purpose of this research is to develop immobilized metal ion affinity zeolite by using solid state ion exchange method to investigate the effect of pH, types of adsorbent using different metal into rifampicin adsorption capacity. Adsorption of rifampicin using zeolite has a greatly potential due to ability to scale up easily, and highly selective. It was found that the highest adsorption capacity for rifampicin occur at pH 8 with Zr-HBeta as adsorbent. H-beta zeolite give highest adsorption capacity because it has higher diameter size, surface area and pore volume compare to Y zeolite. Increasing the surface area and pore volume will give better chances of rifampicin to adsorb into adsorbent. Meanwhile, pH 8 gives the highest adsorption capacity because it is closer with the pKa2 value of rifampicin which is 7.9. While zirconium is the only transition metal containing both acidic and basic surface sites. So this will make it gives better adsorption capacity of rifampicin compare with ferum and nickel. The adsorption isotherm data of rifampicin was well correlated by the Langmuir model.