Design analysis of a piston for compressed natural gas (CNG) engine
Engine pistons are one of the most complex components among all automotive or other industry field components. The engine can be called the heart of a car and the piston may be considered the most important part of an engine. There are lots of research works proposing for engine pistons, new geometr...
Main Author: | |
---|---|
Format: | Undergraduates Project Papers |
Language: | English |
Published: |
2008
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/270/ http://umpir.ump.edu.my/id/eprint/270/ http://umpir.ump.edu.my/id/eprint/270/1/SULAIMAN_ALIAS.pdf |
id |
ump-270 |
---|---|
recordtype |
eprints |
spelling |
ump-2702015-03-03T06:16:10Z http://umpir.ump.edu.my/id/eprint/270/ Design analysis of a piston for compressed natural gas (CNG) engine Sulaiman, Alias TJ Mechanical engineering and machinery Engine pistons are one of the most complex components among all automotive or other industry field components. The engine can be called the heart of a car and the piston may be considered the most important part of an engine. There are lots of research works proposing for engine pistons, new geometries, materials and manufacturing techniques, and this evolution has undergone with a continuous improvement over the last decades and required thorough examination of the smallest details. Notwithstanding all these studies, there is huge number of damaged pistons. Damage mechanisms have different origins and are mainly wear, temperature, and fatigue related. Among the fatigue damages, thermal fatigue and mechanical fatigue, either at room or at high temperature, play a prominent role. This work is concerned only with the analysis of fatigue-damaged pistons. Pistons from diesel engines will be analyzed. Damages initiated at the crown, ring grooves, pin holes and skirt are assessed. A compendium of case studies of fatigue-damaged pistons is presented. An analysis of both thermal fatigue and mechanical fatigue damages is presented and analyzed in this work. A linear static stress analysis, using “Algor works”, is used to determine the stress distribution during the combustion. Stresses at the piston crown and pin holes, as well as stresses at the grooves and skirt as a function of land clearances are also presented. A fractographic study is carried out in order to confirm crack initiation sites. 2008-11 Undergraduates Project Papers NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/270/1/SULAIMAN_ALIAS.pdf Sulaiman, Alias (2008) Design analysis of a piston for compressed natural gas (CNG) engine. Faculty of Mechanical Engineering, Universiti Malaysia Pahang. http://iportal.ump.edu.my/lib/item?id=chamo:40721&theme=UMP2 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Sulaiman, Alias Design analysis of a piston for compressed natural gas (CNG) engine |
description |
Engine pistons are one of the most complex components among all automotive or other industry field components. The engine can be called the heart of a car and the piston may be considered the most important part of an engine. There are lots of research works proposing for engine pistons, new geometries, materials and manufacturing techniques, and this evolution has undergone with a continuous improvement over the last decades and required thorough examination of the smallest details. Notwithstanding all these studies, there is huge number of damaged pistons. Damage mechanisms have different origins and are mainly wear, temperature, and fatigue related. Among the fatigue damages, thermal fatigue and mechanical fatigue, either at room or at high temperature, play a prominent role. This work is concerned only with the analysis of fatigue-damaged pistons. Pistons from diesel engines will be analyzed. Damages initiated at the crown, ring grooves, pin holes and skirt are assessed. A compendium of case studies of fatigue-damaged pistons is presented. An analysis of both thermal fatigue and mechanical fatigue damages is presented and analyzed in this work. A linear static stress analysis, using “Algor works”, is used to determine the stress distribution during the combustion. Stresses at the piston crown and pin holes, as well as stresses at the grooves and skirt as a function of land clearances are also presented. A fractographic study is carried out in order to confirm crack initiation sites. |
format |
Undergraduates Project Papers |
author |
Sulaiman, Alias |
author_facet |
Sulaiman, Alias |
author_sort |
Sulaiman, Alias |
title |
Design analysis of a piston for compressed natural gas (CNG) engine |
title_short |
Design analysis of a piston for compressed natural gas (CNG) engine |
title_full |
Design analysis of a piston for compressed natural gas (CNG) engine |
title_fullStr |
Design analysis of a piston for compressed natural gas (CNG) engine |
title_full_unstemmed |
Design analysis of a piston for compressed natural gas (CNG) engine |
title_sort |
design analysis of a piston for compressed natural gas (cng) engine |
publishDate |
2008 |
url |
http://umpir.ump.edu.my/id/eprint/270/ http://umpir.ump.edu.my/id/eprint/270/ http://umpir.ump.edu.my/id/eprint/270/1/SULAIMAN_ALIAS.pdf |
first_indexed |
2023-09-18T21:52:17Z |
last_indexed |
2023-09-18T21:52:17Z |
_version_ |
1777413849115262976 |