Characteristics of composite nanofibers in the Sno2-Zno and Sno2-Tio2 systems as a photoanodes in dye-sensitized solar cells

ZnO-SnO2 and TiO2-SnO2 composite nanofibers (CNFs) are synthesized by electrospinning a polymeric solution containing an equimolar concentration of the metals precursors and subsequent annealing. The composite formation is demonstrated by X-ray diffraction and energy dispersive X-ray measurements an...

Full description

Bibliographic Details
Main Authors: Bakr, Z. H., Jamil, Ismail, M., Abd Rahim, Yousefsadeh, M., Ramakrishna, S., Rajan, Jose
Format: Conference or Workshop Item
Language:English
Published: 2018
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/23764/
http://umpir.ump.edu.my/id/eprint/23764/1/Characteristics%20of%20composite%20nanofibers%20in%20the%20Sno2-Zno%20and%20Sno2-Tio2%20systems%20as%20a%20photoanodes%20in%20dye-sensitized%20solar%20cells.pdf
Description
Summary:ZnO-SnO2 and TiO2-SnO2 composite nanofibers (CNFs) are synthesized by electrospinning a polymeric solution containing an equimolar concentration of the metals precursors and subsequent annealing. The composite formation is demonstrated by X-ray diffraction and energy dispersive X-ray measurements and morphology by scanning electron microscopy. Synergy in electronic and electrical properties are demonstrated by cyclic voltammetry, absorption spectroscopy, and electrochemical impedance spectroscopy. The TiO2-SnO2 and SnO2-ZnO CNFs offer valuable properties when utilized as a photoanode in dye-sensitized solar cells in terms of photoconversion efficiency (PCE ~8.00%) and (~5.60%), respectively, compared to their binary counterparts SnO2 (~3.90%), TiO2 (~5.1%) and ZnO (~1.38%).