Multi-actuators vehicle collision avoidance system - Experimental validation
The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision...
Main Authors: | , , , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
Institute of Physics Publishing
2018
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/23181/ http://umpir.ump.edu.my/id/eprint/23181/ http://umpir.ump.edu.my/id/eprint/23181/1/Multi-actuators%20vehicle%20collision%20avoidance%20system%20-%20Experimental%20validation.pdf |
id |
ump-23181 |
---|---|
recordtype |
eprints |
spelling |
ump-231812019-02-13T08:58:21Z http://umpir.ump.edu.my/id/eprint/23181/ Multi-actuators vehicle collision avoidance system - Experimental validation Umar Zakir, Abdul Hamid Fakhrul Razi, Ahmad Zakuan Khairul Akmal, Zulkepli Muhammad Zulfaqar, Azmi Hairi, Zamzuri Mohd Azizi, Abdul Rahman Muhammad Aizzat, Zakaria TS Manufactures The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future. Institute of Physics Publishing 2018 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/23181/1/Multi-actuators%20vehicle%20collision%20avoidance%20system%20-%20Experimental%20validation.pdf Umar Zakir, Abdul Hamid and Fakhrul Razi, Ahmad Zakuan and Khairul Akmal, Zulkepli and Muhammad Zulfaqar, Azmi and Hairi, Zamzuri and Mohd Azizi, Abdul Rahman and Muhammad Aizzat, Zakaria (2018) Multi-actuators vehicle collision avoidance system - Experimental validation. In: IOP Conference Series: Materials Science and Engineering: International Conference On Innovative Technology, Engineering And Sciences (ICITES 2018), 01-02 April 2018 , UMP Library, Pekan. pp. 1-11., 342 (1). ISSN 17578981 http://iopscience.iop.org/article/10.1088/1757-899X/342/1/012018/meta |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TS Manufactures |
spellingShingle |
TS Manufactures Umar Zakir, Abdul Hamid Fakhrul Razi, Ahmad Zakuan Khairul Akmal, Zulkepli Muhammad Zulfaqar, Azmi Hairi, Zamzuri Mohd Azizi, Abdul Rahman Muhammad Aizzat, Zakaria Multi-actuators vehicle collision avoidance system - Experimental validation |
description |
The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future. |
format |
Conference or Workshop Item |
author |
Umar Zakir, Abdul Hamid Fakhrul Razi, Ahmad Zakuan Khairul Akmal, Zulkepli Muhammad Zulfaqar, Azmi Hairi, Zamzuri Mohd Azizi, Abdul Rahman Muhammad Aizzat, Zakaria |
author_facet |
Umar Zakir, Abdul Hamid Fakhrul Razi, Ahmad Zakuan Khairul Akmal, Zulkepli Muhammad Zulfaqar, Azmi Hairi, Zamzuri Mohd Azizi, Abdul Rahman Muhammad Aizzat, Zakaria |
author_sort |
Umar Zakir, Abdul Hamid |
title |
Multi-actuators vehicle collision avoidance system - Experimental validation |
title_short |
Multi-actuators vehicle collision avoidance system - Experimental validation |
title_full |
Multi-actuators vehicle collision avoidance system - Experimental validation |
title_fullStr |
Multi-actuators vehicle collision avoidance system - Experimental validation |
title_full_unstemmed |
Multi-actuators vehicle collision avoidance system - Experimental validation |
title_sort |
multi-actuators vehicle collision avoidance system - experimental validation |
publisher |
Institute of Physics Publishing |
publishDate |
2018 |
url |
http://umpir.ump.edu.my/id/eprint/23181/ http://umpir.ump.edu.my/id/eprint/23181/ http://umpir.ump.edu.my/id/eprint/23181/1/Multi-actuators%20vehicle%20collision%20avoidance%20system%20-%20Experimental%20validation.pdf |
first_indexed |
2023-09-18T22:34:37Z |
last_indexed |
2023-09-18T22:34:37Z |
_version_ |
1777416512734232576 |