Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation
This paper studies the synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation method. The kenaf fibre was prepared using the hydrothermal carbonisation process. Inverse suspension polymerisation process involved two different solution mixtures; a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UMP
2017
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/1/2_Tuan%20Zakaria%20et%20al%282%29.pdf |
id |
ump-21165 |
---|---|
recordtype |
eprints |
spelling |
ump-211652018-05-30T04:01:09Z http://umpir.ump.edu.my/id/eprint/21165/ Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation Munirah Ezzah, Tuan Zakaria Saidatul Shima, Jamari Suriati, Ghazali TP Chemical technology This paper studies the synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation method. The kenaf fibre was prepared using the hydrothermal carbonisation process. Inverse suspension polymerisation process involved two different solution mixtures; a continuous phase containing cyclohexane, span-80, and kenaf fibre filler and a dispersed phase containing partially neutralised acrylic acid, acrylamide, initiator APS, and crosslinker NN-Methylenebisacrylamide. Kenaf fibre filler addition was varied with different weight percentages (0.01- 0.05 wt%). Water absorption testing using the teabag method showed sample containing 0.04 wt% carbon filler had the highest and optimal percentage of water absorbency, 55.27 g/g while the sample containing 0.01 wt% carbon filler displayed the lowest percentage of water absorbency, 45.27 g/g. All SPC samples showed a higher rate of water absorbency compared to SAP sample which had 40.61 g/g of average water absorbency. The samples were characterised by FTIR, FESEM - EDX, Mastersizer. All synthesised samples produced were in spherical beads form. It can be concluded that kenaf fibre affects the enhancement of superabsorbent polymer performance. Penerbit UMP 2017-09 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/21165/1/2_Tuan%20Zakaria%20et%20al%282%29.pdf Munirah Ezzah, Tuan Zakaria and Saidatul Shima, Jamari and Suriati, Ghazali (2017) Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation. Journal of Mechanical Engineering and Sciences (JMES) , 11 (3). pp. 2794-2800. ISSN 2289-4659 (print); 2231-8380 (online) https://doi.org/10.15282/jmes.11.3.2017.2.0253 doi: 10.15282/jmes.11.3.2017.2.0253 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Munirah Ezzah, Tuan Zakaria Saidatul Shima, Jamari Suriati, Ghazali Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
description |
This paper studies the synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation method. The kenaf fibre was prepared using the hydrothermal carbonisation process. Inverse suspension polymerisation process involved two different solution mixtures; a continuous phase containing cyclohexane, span-80, and kenaf fibre filler and a dispersed phase containing partially neutralised acrylic acid, acrylamide, initiator APS, and crosslinker NN-Methylenebisacrylamide. Kenaf fibre filler addition was varied with different weight percentages (0.01- 0.05 wt%). Water absorption testing using the teabag method showed sample containing 0.04 wt% carbon filler had the highest and optimal percentage of water absorbency, 55.27 g/g while the sample containing 0.01 wt% carbon filler displayed the lowest percentage of water absorbency, 45.27 g/g. All SPC samples showed a higher rate of water absorbency compared to SAP sample which had 40.61 g/g of average water absorbency. The samples were characterised by FTIR, FESEM - EDX, Mastersizer. All synthesised samples produced were in spherical beads form. It can be concluded that kenaf fibre affects the enhancement of superabsorbent polymer performance. |
format |
Article |
author |
Munirah Ezzah, Tuan Zakaria Saidatul Shima, Jamari Suriati, Ghazali |
author_facet |
Munirah Ezzah, Tuan Zakaria Saidatul Shima, Jamari Suriati, Ghazali |
author_sort |
Munirah Ezzah, Tuan Zakaria |
title |
Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
title_short |
Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
title_full |
Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
title_fullStr |
Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
title_full_unstemmed |
Synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
title_sort |
synthesis of superabsorbent carbonaceous kenaf fibre filled polymer using inverse suspension polymerisation |
publisher |
Penerbit UMP |
publishDate |
2017 |
url |
http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/ http://umpir.ump.edu.my/id/eprint/21165/1/2_Tuan%20Zakaria%20et%20al%282%29.pdf |
first_indexed |
2023-09-18T22:30:57Z |
last_indexed |
2023-09-18T22:30:57Z |
_version_ |
1777416281328189440 |