Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil
The main objective of the present work is to study the effect of Nickel-Cerium/Alumina multifunctional catalyst (Ni-Ce/Al2O3) mass loading on pyrolysis of coconut copra and rice husk via thermogravimetric analysis. The sample is pyrolyzed from 30 �C up to 700 �C at a constant heating rate of 10 �C/m...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/1/Thermogravimetric%20catalytic%20pyrolysis%20and%20kinetic.pdf |
id |
ump-20046 |
---|---|
recordtype |
eprints |
spelling |
ump-200462018-06-05T05:19:13Z http://umpir.ump.edu.my/id/eprint/20046/ Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil Vekes, Balasundram Norazana, Ibrahim Rafiziana, Md Kasmani Mohd. Kamaruddin, Abd. Hamid Ruzinah, Isha Hasrinah, Hasbullah Roshafima, Rasit Ali TP Chemical technology The main objective of the present work is to study the effect of Nickel-Cerium/Alumina multifunctional catalyst (Ni-Ce/Al2O3) mass loading on pyrolysis of coconut copra and rice husk via thermogravimetric analysis. The sample is pyrolyzed from 30 �C up to 700 �C at a constant heating rate of 10 �C/min in nitrogen environment flowing at 150 mL/min. The multifunctional catalyst (Ni-Ce/Al2O3) was prepared via incipient wet impregnation method. Pyrolysis feedstocks were prepared based on biomass to catalyst mass loading ratio. The TG-DTG curve shows that the presences of catalyst significantly affect the devolatilization rate of biomass. Among TGA-pyrolyzed coconut copra samples, the CC-3 (1:0.15) has achieved the highest mass loss (83.3%). For rice husk, the non-catalytic sample has attained the highest mass loss of volatile matter (48.7%). In addition, the kinetic characteristics of non-catalytic and catalytic pyrolysis of biomass were also studied and calculated by employing the Coats-Redfern integral method. The CC-1 has lower activation energy (53.10 kJ/mol) than that of catalytic sample particularly CC-3 (79.28 kJ/mol). The presence of a catalyst on rice husk is able to reduce the activation energy of noncatalytic rice husk sample from 49.78 to 45.24 kJ/mol. Elsevier 2017 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/20046/1/Thermogravimetric%20catalytic%20pyrolysis%20and%20kinetic.pdf Vekes, Balasundram and Norazana, Ibrahim and Rafiziana, Md Kasmani and Mohd. Kamaruddin, Abd. Hamid and Ruzinah, Isha and Hasrinah, Hasbullah and Roshafima, Rasit Ali (2017) Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167. pp. 218-228. ISSN 0959-6526 (print), 1879-1786 (online) http://dx.doi.org/10.1016/j.jclepro.2017.08.173 doi: 10.1016/j.jclepro.2017.08.173 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Vekes, Balasundram Norazana, Ibrahim Rafiziana, Md Kasmani Mohd. Kamaruddin, Abd. Hamid Ruzinah, Isha Hasrinah, Hasbullah Roshafima, Rasit Ali Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
description |
The main objective of the present work is to study the effect of Nickel-Cerium/Alumina multifunctional catalyst (Ni-Ce/Al2O3) mass loading on pyrolysis of coconut copra and rice husk via thermogravimetric analysis. The sample is pyrolyzed from 30 �C up to 700 �C at a constant heating rate of 10 �C/min in nitrogen environment flowing at 150 mL/min. The multifunctional catalyst (Ni-Ce/Al2O3) was prepared via incipient wet impregnation method. Pyrolysis feedstocks were prepared based on biomass to catalyst mass loading ratio. The TG-DTG curve shows that the presences of catalyst significantly affect the devolatilization rate of biomass. Among TGA-pyrolyzed coconut copra samples, the CC-3 (1:0.15) has achieved the highest mass loss (83.3%). For rice husk, the non-catalytic sample has attained the highest mass loss of volatile matter (48.7%). In addition, the kinetic characteristics of non-catalytic and catalytic
pyrolysis of biomass were also studied and calculated by employing the Coats-Redfern integral method. The CC-1 has lower activation energy (53.10 kJ/mol) than that of catalytic sample particularly CC-3 (79.28 kJ/mol). The presence of a catalyst on rice husk is able to reduce the activation energy of noncatalytic rice husk sample from 49.78 to 45.24 kJ/mol. |
format |
Article |
author |
Vekes, Balasundram Norazana, Ibrahim Rafiziana, Md Kasmani Mohd. Kamaruddin, Abd. Hamid Ruzinah, Isha Hasrinah, Hasbullah Roshafima, Rasit Ali |
author_facet |
Vekes, Balasundram Norazana, Ibrahim Rafiziana, Md Kasmani Mohd. Kamaruddin, Abd. Hamid Ruzinah, Isha Hasrinah, Hasbullah Roshafima, Rasit Ali |
author_sort |
Vekes, Balasundram |
title |
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
title_short |
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
title_full |
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
title_fullStr |
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
title_full_unstemmed |
Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
title_sort |
thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil |
publisher |
Elsevier |
publishDate |
2017 |
url |
http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/ http://umpir.ump.edu.my/id/eprint/20046/1/Thermogravimetric%20catalytic%20pyrolysis%20and%20kinetic.pdf |
first_indexed |
2023-09-18T22:28:43Z |
last_indexed |
2023-09-18T22:28:43Z |
_version_ |
1777416140867239936 |