One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier Ltd
2018
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/1/One-step%20electrosynthesis%20of%20MnO2-RGO%20nanocomposite%20and%20its%20enhanced%20electrochemical%20performance.pdf http://umpir.ump.edu.my/id/eprint/18892/12/One-step%20electrosynthesis%20of%20MnO2rGO%20nanocomposite%20and%20its%20enhanced.pdf |
id |
ump-18892 |
---|---|
recordtype |
eprints |
spelling |
ump-188922018-04-11T03:09:51Z http://umpir.ump.edu.my/id/eprint/18892/ One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance Ali, Gomaa A. M. Chong, Kwok Feng M. M., Yusoff Algarni, H. Q Science (General) We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173 m2g−1) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473 Fg−1 at 0.25 Ag−1, which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles. Elsevier Ltd 2018-05 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/18892/1/One-step%20electrosynthesis%20of%20MnO2-RGO%20nanocomposite%20and%20its%20enhanced%20electrochemical%20performance.pdf application/pdf en http://umpir.ump.edu.my/id/eprint/18892/12/One-step%20electrosynthesis%20of%20MnO2rGO%20nanocomposite%20and%20its%20enhanced.pdf Ali, Gomaa A. M. and Chong, Kwok Feng and M. M., Yusoff and Algarni, H. (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceramics International, 44 (7). pp. 7799-7807. ISSN 02728842 https://doi.org/10.1016/j.ceramint.2018.01.212 10.1016/j.ceramint.2018.01.212 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Ali, Gomaa A. M. Chong, Kwok Feng M. M., Yusoff Algarni, H. One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
description |
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173 m2g−1) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473 Fg−1 at 0.25 Ag−1, which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles. |
format |
Article |
author |
Ali, Gomaa A. M. Chong, Kwok Feng M. M., Yusoff Algarni, H. |
author_facet |
Ali, Gomaa A. M. Chong, Kwok Feng M. M., Yusoff Algarni, H. |
author_sort |
Ali, Gomaa A. M. |
title |
One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
title_short |
One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
title_full |
One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
title_fullStr |
One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
title_full_unstemmed |
One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance |
title_sort |
one-step electrosynthesis of mno2/rgo nanocomposite and its enhanced electrochemical performance |
publisher |
Elsevier Ltd |
publishDate |
2018 |
url |
http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/ http://umpir.ump.edu.my/id/eprint/18892/1/One-step%20electrosynthesis%20of%20MnO2-RGO%20nanocomposite%20and%20its%20enhanced%20electrochemical%20performance.pdf http://umpir.ump.edu.my/id/eprint/18892/12/One-step%20electrosynthesis%20of%20MnO2rGO%20nanocomposite%20and%20its%20enhanced.pdf |
first_indexed |
2023-09-18T22:26:59Z |
last_indexed |
2023-09-18T22:26:59Z |
_version_ |
1777416031928582144 |