Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach

Abstract: This study presents the finite element analysis technique to predict the fatigue life using narrow band frequency response approach. The life prediction results are worthy for improving the component design at the very early developing stage. This approach is adequate for periodic loading,...

Full description

Bibliographic Details
Main Authors: M. M., Rahman, R. A., Bakar
Format: Article
Language:English
Published: MedWell, Journal 2008
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/1538/
http://umpir.ump.edu.my/id/eprint/1538/1/Assessment_of_Fatigue_Life_Behaviour_of_Cylinder_Block_for_Free_Piston_Engine_Using_Frequency_Response_Approach.pdf
id ump-1538
recordtype eprints
spelling ump-15382018-01-25T07:14:16Z http://umpir.ump.edu.my/id/eprint/1538/ Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach M. M., Rahman R. A., Bakar TJ Mechanical engineering and machinery Abstract: This study presents the finite element analysis technique to predict the fatigue life using narrow band frequency response approach. The life prediction results are worthy for improving the component design at the very early developing stage. This approach is adequate for periodic loading, however, requires very large time records to accurately describe random loading processes. This study describes how this technique can be implemented in the finite element environment to rapidly identify the critical areas of the structure. Fatigue damage in conventionally determined from time signals of the loading, frequently in the form of stress and strain. However, there are scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a Power Spectral Density (PSD) plot. The vibration fatigue calculation can be utilized where the random loading and response are categorized using power spectral density functions and the dynamic structure is modeled as a linear transfer function. This study also investigates the effect of the mean stress on the fatigue life prediction using the random loading. The acquired results indicate that the Goodman mean stress correction method gives the most conservative results with the Gerber and no (zero) mean stress method. The proposed technique is capable of determining premature products failure phenomena. Therefore, it can be reduce cost, time to market, improve the product reliability and finally the user confidence. MedWell, Journal 2008 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/1538/1/Assessment_of_Fatigue_Life_Behaviour_of_Cylinder_Block_for_Free_Piston_Engine_Using_Frequency_Response_Approach.pdf M. M., Rahman and R. A., Bakar (2008) Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach. Research Journal of Applied Sciences, 3 (1). pp. 32-34. ISSN 1815-932X
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
M. M., Rahman
R. A., Bakar
Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
description Abstract: This study presents the finite element analysis technique to predict the fatigue life using narrow band frequency response approach. The life prediction results are worthy for improving the component design at the very early developing stage. This approach is adequate for periodic loading, however, requires very large time records to accurately describe random loading processes. This study describes how this technique can be implemented in the finite element environment to rapidly identify the critical areas of the structure. Fatigue damage in conventionally determined from time signals of the loading, frequently in the form of stress and strain. However, there are scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a Power Spectral Density (PSD) plot. The vibration fatigue calculation can be utilized where the random loading and response are categorized using power spectral density functions and the dynamic structure is modeled as a linear transfer function. This study also investigates the effect of the mean stress on the fatigue life prediction using the random loading. The acquired results indicate that the Goodman mean stress correction method gives the most conservative results with the Gerber and no (zero) mean stress method. The proposed technique is capable of determining premature products failure phenomena. Therefore, it can be reduce cost, time to market, improve the product reliability and finally the user confidence.
format Article
author M. M., Rahman
R. A., Bakar
author_facet M. M., Rahman
R. A., Bakar
author_sort M. M., Rahman
title Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
title_short Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
title_full Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
title_fullStr Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
title_full_unstemmed Assessment of Fatigue Life Behaviour of Cylinder Block for Free Piston Engine Using Frequency Response Approach
title_sort assessment of fatigue life behaviour of cylinder block for free piston engine using frequency response approach
publisher MedWell, Journal
publishDate 2008
url http://umpir.ump.edu.my/id/eprint/1538/
http://umpir.ump.edu.my/id/eprint/1538/1/Assessment_of_Fatigue_Life_Behaviour_of_Cylinder_Block_for_Free_Piston_Engine_Using_Frequency_Response_Approach.pdf
first_indexed 2023-09-18T21:54:46Z
last_indexed 2023-09-18T21:54:46Z
_version_ 1777414004980842496