Optimization of surface roughness in milling using neural network (NN)
This thesis discuss the Optimization of surface roughness in milling using Artificial Neural Network (ANN).Response Surface Methodology (RSM) and Neural Network implemented to model the end milling process that are using coated carbide TiN as the cutting tool and aluminium 6061 as material due to pr...
Main Author: | |
---|---|
Format: | Undergraduates Project Papers |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/1494/ http://umpir.ump.edu.my/id/eprint/1494/1/Ruzaimi_Zainon_%28_CD_5067_%29.pdf |
id |
ump-1494 |
---|---|
recordtype |
eprints |
spelling |
ump-14942015-03-03T07:51:24Z http://umpir.ump.edu.my/id/eprint/1494/ Optimization of surface roughness in milling using neural network (NN) Ruzaimi, Zainon TA Engineering (General). Civil engineering (General) This thesis discuss the Optimization of surface roughness in milling using Artificial Neural Network (ANN).Response Surface Methodology (RSM) and Neural Network implemented to model the end milling process that are using coated carbide TiN as the cutting tool and aluminium 6061 as material due to predict the resulting of surface roughness. The parameters of the variables are feed, cutting speed and depth of cut while the output is surface roughness. The model is validated through a comparison of the experimental values with their predicted counterparts. A good agreement is found where RSM approaches show 83.64% accuracy which reliable to be use in Ra prediction and state the feed parameter is the most significant parameter followed by depth of cut and cutting speed influence the surface roughness. ANN technique shows 96.68% of accuracy which is feasible and applicable in the prediction value of Ra. The proved technique opens the door for a new, simple and efficient approach that could be applied to the calibration of other empirical models of machining. 2010-12 Undergraduates Project Papers NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/1494/1/Ruzaimi_Zainon_%28_CD_5067_%29.pdf Ruzaimi, Zainon (2010) Optimization of surface roughness in milling using neural network (NN). Faculty of Mechanical Engineering, Universiti Malaysia Pahang. |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Ruzaimi, Zainon Optimization of surface roughness in milling using neural network (NN) |
description |
This thesis discuss the Optimization of surface roughness in milling using Artificial Neural Network (ANN).Response Surface Methodology (RSM) and Neural Network implemented to model the end milling process that are using coated carbide TiN as the cutting tool and aluminium 6061 as material due to predict the resulting of surface roughness. The parameters of the variables are feed, cutting speed and depth of cut while the output is surface roughness. The model is validated through a comparison of the experimental values with their predicted counterparts. A good agreement is found where RSM approaches show 83.64% accuracy which reliable to be use in Ra prediction and state the feed parameter is the most significant parameter followed by depth of cut and cutting speed influence the surface roughness. ANN technique shows 96.68% of accuracy which is feasible and applicable in the prediction value of Ra. The proved technique opens the door for a new, simple and efficient approach that could be applied to the calibration of other empirical models of machining. |
format |
Undergraduates Project Papers |
author |
Ruzaimi, Zainon |
author_facet |
Ruzaimi, Zainon |
author_sort |
Ruzaimi, Zainon |
title |
Optimization of surface roughness in milling using neural network (NN) |
title_short |
Optimization of surface roughness in milling using neural network (NN) |
title_full |
Optimization of surface roughness in milling using neural network (NN) |
title_fullStr |
Optimization of surface roughness in milling using neural network (NN) |
title_full_unstemmed |
Optimization of surface roughness in milling using neural network (NN) |
title_sort |
optimization of surface roughness in milling using neural network (nn) |
publishDate |
2010 |
url |
http://umpir.ump.edu.my/id/eprint/1494/ http://umpir.ump.edu.my/id/eprint/1494/1/Ruzaimi_Zainon_%28_CD_5067_%29.pdf |
first_indexed |
2023-09-18T21:54:40Z |
last_indexed |
2023-09-18T21:54:40Z |
_version_ |
1777413999117205504 |