Estimation-based Metaheuristics: A New Branch of Computational Intelligence

In this paper, a new branch of computational intelligence named estimation-based metaheuristic is introduced. Metaheuristic algorithms can be classified based on their source of inspiration. Besides biology, physics and chemistry, state estimation algorithm also has become a source of inspiration fo...

Full description

Bibliographic Details
Main Authors: Nor Hidayati, Abd Aziz, Zuwairie, Ibrahim, Saifudin, Razali, Nor Azlina, Ab. Aziz
Format: Conference or Workshop Item
Language:English
Published: 2016
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/14583/
http://umpir.ump.edu.my/id/eprint/14583/1/P064%20pg469-476.pdf
id ump-14583
recordtype eprints
spelling ump-145832018-02-08T02:47:52Z http://umpir.ump.edu.my/id/eprint/14583/ Estimation-based Metaheuristics: A New Branch of Computational Intelligence Nor Hidayati, Abd Aziz Zuwairie, Ibrahim Saifudin, Razali Nor Azlina, Ab. Aziz TK Electrical engineering. Electronics Nuclear engineering In this paper, a new branch of computational intelligence named estimation-based metaheuristic is introduced. Metaheuristic algorithms can be classified based on their source of inspiration. Besides biology, physics and chemistry, state estimation algorithm also has become a source of inspiration for developing metaheuristic algorithms. Inspired by the estimation capability of Kalman Filter, Simulated Kalman Filter, SKF, uses a population of agents to make estimations of the optimum. Each agent in SKF acts as a Kalman Filter. By adapting the standard Kalman Filter framework, each individual agent finds an optimization solution by using a simulated measurement process that is guided by a best-so-far solution as a reference. Heuristic Kalman Algorithm (HKA) also is inspired by the Kalman Filter framework. HKA however, explicitly consider the optimization problem as a measurement process in generating the estimate of the optimum. In evaluating the performance of the estimation-based algorithms, it is implemented to 30 benchmark functions of the CEC 2014 benchmark suite. Statistical analysis is then carried out to rank the estimation-based algorithms’ results to those obtained by other metaheuristic algorithms. The experimental results show that the estimation-based metaheuristic is a promising approach to solving global optimization problem and demonstrates a competitive performance to some well-known metaheuristic algorithms 2016 Conference or Workshop Item PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/14583/1/P064%20pg469-476.pdf Nor Hidayati, Abd Aziz and Zuwairie, Ibrahim and Saifudin, Razali and Nor Azlina, Ab. Aziz (2016) Estimation-based Metaheuristics: A New Branch of Computational Intelligence. In: Proceedings of The National Conference for Postgraduate Research (NCON-PGR 2016), 24-25 September 2016 , Universiti Malaysia Pahang (UMP), Pekan, Pahang. pp. 469-476..
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Nor Hidayati, Abd Aziz
Zuwairie, Ibrahim
Saifudin, Razali
Nor Azlina, Ab. Aziz
Estimation-based Metaheuristics: A New Branch of Computational Intelligence
description In this paper, a new branch of computational intelligence named estimation-based metaheuristic is introduced. Metaheuristic algorithms can be classified based on their source of inspiration. Besides biology, physics and chemistry, state estimation algorithm also has become a source of inspiration for developing metaheuristic algorithms. Inspired by the estimation capability of Kalman Filter, Simulated Kalman Filter, SKF, uses a population of agents to make estimations of the optimum. Each agent in SKF acts as a Kalman Filter. By adapting the standard Kalman Filter framework, each individual agent finds an optimization solution by using a simulated measurement process that is guided by a best-so-far solution as a reference. Heuristic Kalman Algorithm (HKA) also is inspired by the Kalman Filter framework. HKA however, explicitly consider the optimization problem as a measurement process in generating the estimate of the optimum. In evaluating the performance of the estimation-based algorithms, it is implemented to 30 benchmark functions of the CEC 2014 benchmark suite. Statistical analysis is then carried out to rank the estimation-based algorithms’ results to those obtained by other metaheuristic algorithms. The experimental results show that the estimation-based metaheuristic is a promising approach to solving global optimization problem and demonstrates a competitive performance to some well-known metaheuristic algorithms
format Conference or Workshop Item
author Nor Hidayati, Abd Aziz
Zuwairie, Ibrahim
Saifudin, Razali
Nor Azlina, Ab. Aziz
author_facet Nor Hidayati, Abd Aziz
Zuwairie, Ibrahim
Saifudin, Razali
Nor Azlina, Ab. Aziz
author_sort Nor Hidayati, Abd Aziz
title Estimation-based Metaheuristics: A New Branch of Computational Intelligence
title_short Estimation-based Metaheuristics: A New Branch of Computational Intelligence
title_full Estimation-based Metaheuristics: A New Branch of Computational Intelligence
title_fullStr Estimation-based Metaheuristics: A New Branch of Computational Intelligence
title_full_unstemmed Estimation-based Metaheuristics: A New Branch of Computational Intelligence
title_sort estimation-based metaheuristics: a new branch of computational intelligence
publishDate 2016
url http://umpir.ump.edu.my/id/eprint/14583/
http://umpir.ump.edu.my/id/eprint/14583/1/P064%20pg469-476.pdf
first_indexed 2023-09-18T22:18:30Z
last_indexed 2023-09-18T22:18:30Z
_version_ 1777415498829398016