Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration

A fast and facile approach based on potentiostatic electrochemical polymerization was used to prepare a polypyrrole/graphene oxide/zinc oxide (PPy/GO/ZnO) nanocomposite deposited on a flexible nickel foam. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy revealed the p...

Full description

Bibliographic Details
Main Authors: W. K., Chee, H. N., Lim, I., Harrison, K. F., Chong, Z., Zainal, C. H., Ng, N. M., Huang
Format: Article
Language:English
Published: Elsevier 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/12552/
http://umpir.ump.edu.my/id/eprint/12552/
http://umpir.ump.edu.my/id/eprint/12552/
http://umpir.ump.edu.my/id/eprint/12552/7/fist-2015-chong-%20Performance%20of%20Flexible%20and%20Binderless%20Polypyrrole.pdf
Description
Summary:A fast and facile approach based on potentiostatic electrochemical polymerization was used to prepare a polypyrrole/graphene oxide/zinc oxide (PPy/GO/ZnO) nanocomposite deposited on a flexible nickel foam. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy revealed the presence of zinc oxide on the PPy/GO/ZnO nanocomposite. A supercapacitor was fabricated by sandwiching a filter paper immersed in a sodium sulfate solution between two nickel foam electrodes coated with the PPy/GO/ZnO nanocomposite. The electrochemical performance of the supercapacitor was characterized using a two-electrode configuration, and the cyclic voltammetry curve recorded at a fast scan rate of 100 mV/s was pseudo-rectangular. A specific capacitance of 94.6 F/g at a current density of 1 A/g was obtained from constant current charge/discharge measurements. The utilization of the pseudo-capacitive behavior of the polypyrrole and zinc oxide, and the electrical double layer capacitance of the graphene oxide, gave rise to a high energy and power density of 10.65 Wh/kg and 258.26 W/kg at 1 A/g, respectively. The capacitance of the supercapacitor after 1000 galvanostatic charge/discharge cycles was 74% of its original value. The potential application of the as-fabricated supercapacitor in realistic energy delivery systems was demonstrated by its ability to light up a light emitting diode for about 2 minutes after being charged for approximately 30 seconds. Keywords: Supercapacitor electrode; Zinc oxide; Graphene oxide; Polypyrrole; Binderless http://dx.doi.org/10.1016/j.electacta.2015.01.080