Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)

Let Kα be the set of functions f, analytic in z∈ D = {z : z < 1} satisfying ( ) ( ) Re 0 ( ) / z f z g z α  ′   >     , for g starlike in D and 0 ≤α ≤ 1. It is shown that such functions form a subset of the close-to-convex functions. Sharp bounds for the coefficients are gi...

Full description

Bibliographic Details
Main Author: D K Thomas
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2015
Online Access:http://journalarticle.ukm.my/9477/
http://journalarticle.ukm.my/9477/
http://journalarticle.ukm.my/9477/1/jqma-11-1-paper2.pdf
id ukm-9477
recordtype eprints
spelling ukm-94772016-12-14T06:50:03Z http://journalarticle.ukm.my/9477/ Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang) D K Thomas, Let Kα be the set of functions f, analytic in z∈ D = {z : z < 1} satisfying ( ) ( ) Re 0 ( ) / z f z g z α  ′   >     , for g starlike in D and 0 ≤α ≤ 1. It is shown that such functions form a subset of the close-to-convex functions. Sharp bounds for the coefficients are given and the Fekete-Szegö problem is solved. Keywords: univalent functions; starlike functions; close-to-convex functions; coefficients; Fekete-Szegö ABSTRAK Andaikan Kα set fungsi f, analisis dalam z∈ D = {z : z < 1} memenuhi ( ) ( ) 0 ( ) / z f z Ny g z α  ′    >     , untuk g bak bintang dalam D dan 0 ≤α ≤ 1. Dapat ditunjukkan bahawa fungsi tersebut merupakan subset bagi suatu set fungsi hampir cembung. Batas-batas terbaik bagi pekali diberikan dan masalah Fekete-Szegö diselesaikan. Penerbit Universiti Kebangsaan Malaysia 2015-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/9477/1/jqma-11-1-paper2.pdf D K Thomas, (2015) Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang). Journal of Quality Measurement and Analysis, 11 (1). pp. 11-17. ISSN 1823-5670 http://www.ukm.my/jqma/jqma11_1a.html
repository_type Digital Repository
institution_category Local University
institution Universiti Kebangasaan Malaysia
building UKM Institutional Repository
collection Online Access
language English
description Let Kα be the set of functions f, analytic in z∈ D = {z : z < 1} satisfying ( ) ( ) Re 0 ( ) / z f z g z α  ′   >     , for g starlike in D and 0 ≤α ≤ 1. It is shown that such functions form a subset of the close-to-convex functions. Sharp bounds for the coefficients are given and the Fekete-Szegö problem is solved. Keywords: univalent functions; starlike functions; close-to-convex functions; coefficients; Fekete-Szegö ABSTRAK Andaikan Kα set fungsi f, analisis dalam z∈ D = {z : z < 1} memenuhi ( ) ( ) 0 ( ) / z f z Ny g z α  ′    >     , untuk g bak bintang dalam D dan 0 ≤α ≤ 1. Dapat ditunjukkan bahawa fungsi tersebut merupakan subset bagi suatu set fungsi hampir cembung. Batas-batas terbaik bagi pekali diberikan dan masalah Fekete-Szegö diselesaikan.
format Article
author D K Thomas,
spellingShingle D K Thomas,
Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
author_facet D K Thomas,
author_sort D K Thomas,
title Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
title_short Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
title_full Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
title_fullStr Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
title_full_unstemmed Close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
title_sort close-to-convex functions with starlike powers (fungsi hampir cembung dengan kuasa bak bintang)
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2015
url http://journalarticle.ukm.my/9477/
http://journalarticle.ukm.my/9477/
http://journalarticle.ukm.my/9477/1/jqma-11-1-paper2.pdf
first_indexed 2023-09-18T19:54:58Z
last_indexed 2023-09-18T19:54:58Z
_version_ 1777406467824943104