Si nanowires produced by very high frequency plasma enhanced chemical vapor deposition via VLS mechanism
Silicon nanowires (SiNWs) with diameter of about a few nanometers and length of 3 μm on silicon wafers were synthesized by very high frequency plasma enhanced chemical vapor deposition. Scanning electron microscopy (SEM) observations showed that the silicon nanowires were grown randomly and energy-d...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universiti Kebangsaan Malaysia
2013
|
Online Access: | http://journalarticle.ukm.my/5901/ http://journalarticle.ukm.my/5901/ http://journalarticle.ukm.my/5901/1/09%2520Yussof%2520Wahab.pdf |
Summary: | Silicon nanowires (SiNWs) with diameter of about a few nanometers and length of 3 μm on silicon wafers were synthesized by very high frequency plasma enhanced chemical vapor deposition. Scanning electron microscopy (SEM) observations showed that the silicon nanowires were grown randomly and energy-dispersive X-ray spectroscopy analysis indicates that the nanowires have the composition of Si, Au and O elements. The SiNWs were characterized by high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. SEM micrographs displayed SiNWs that are needle-like with a diameter ranged from 30 nm at the top to 100 nm at the bottom of the wire and have length a few of micrometers. In addition, HRTEM showed that SiNWs consist of crystalline silicon core and amorphous silica layer. |
---|