On convergence almost everywhere of multiple fourier integrals

of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-e...

Full description

Bibliographic Details
Main Authors: Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2011
Online Access:http://journalarticle.ukm.my/2895/
http://journalarticle.ukm.my/2895/
http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf
id ukm-2895
recordtype eprints
spelling ukm-28952016-12-14T06:32:58Z http://journalarticle.ukm.my/2895/ On convergence almost everywhere of multiple fourier integrals Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-everywhere on RN \ supp f . Penerbit Universiti Kebangsaan Malaysia 2011-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf Anvarjon Ahmedov, and Norashikin Abdul Aziz, and Mohd Noriznan Mohtar, (2011) On convergence almost everywhere of multiple fourier integrals. Journal of Quality Measurement and Analysis, 7 (1). pp. 109-115. ISSN 1823-5670 http://www.ukm.my/~ppsmfst/jqma
repository_type Digital Repository
institution_category Local University
institution Universiti Kebangasaan Malaysia
building UKM Institutional Repository
collection Online Access
language English
description of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-everywhere on RN \ supp f .
format Article
author Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
spellingShingle Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
On convergence almost everywhere of multiple fourier integrals
author_facet Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
author_sort Anvarjon Ahmedov,
title On convergence almost everywhere of multiple fourier integrals
title_short On convergence almost everywhere of multiple fourier integrals
title_full On convergence almost everywhere of multiple fourier integrals
title_fullStr On convergence almost everywhere of multiple fourier integrals
title_full_unstemmed On convergence almost everywhere of multiple fourier integrals
title_sort on convergence almost everywhere of multiple fourier integrals
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2011
url http://journalarticle.ukm.my/2895/
http://journalarticle.ukm.my/2895/
http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf
first_indexed 2023-09-18T19:37:18Z
last_indexed 2023-09-18T19:37:18Z
_version_ 1777405357094600704