On convergence almost everywhere of multiple fourier integrals
of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-e...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2011
|
Online Access: | http://journalarticle.ukm.my/2895/ http://journalarticle.ukm.my/2895/ http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf |
id |
ukm-2895 |
---|---|
recordtype |
eprints |
spelling |
ukm-28952016-12-14T06:32:58Z http://journalarticle.ukm.my/2895/ On convergence almost everywhere of multiple fourier integrals Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-everywhere on RN \ supp f . Penerbit Universiti Kebangsaan Malaysia 2011-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf Anvarjon Ahmedov, and Norashikin Abdul Aziz, and Mohd Noriznan Mohtar, (2011) On convergence almost everywhere of multiple fourier integrals. Journal of Quality Measurement and Analysis, 7 (1). pp. 109-115. ISSN 1823-5670 http://www.ukm.my/~ppsmfst/jqma |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Kebangasaan Malaysia |
building |
UKM Institutional Repository |
collection |
Online Access |
language |
English |
description |
of the polyharmonic operator, which coincides with the multiple Fourier integrals summed
over the domains corresponding to the surface levels of the polyharmonic polynomials. It is
proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN )
converge to zero almost-everywhere on RN \ supp f . |
format |
Article |
author |
Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, |
spellingShingle |
Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, On convergence almost everywhere of multiple fourier integrals |
author_facet |
Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, |
author_sort |
Anvarjon Ahmedov, |
title |
On convergence almost everywhere of multiple fourier integrals |
title_short |
On convergence almost everywhere of multiple fourier integrals |
title_full |
On convergence almost everywhere of multiple fourier integrals |
title_fullStr |
On convergence almost everywhere of multiple fourier integrals |
title_full_unstemmed |
On convergence almost everywhere of multiple fourier integrals |
title_sort |
on convergence almost everywhere of multiple fourier integrals |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2011 |
url |
http://journalarticle.ukm.my/2895/ http://journalarticle.ukm.my/2895/ http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf |
first_indexed |
2023-09-18T19:37:18Z |
last_indexed |
2023-09-18T19:37:18Z |
_version_ |
1777405357094600704 |