Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad

This study is carried out to investigate the properties of copper (I) iodide (CuI) thin films deposited by using a novel-mist atomization method. The properties of CuI thin films studied in this research are structural, morphological, electrical and optical properties. The new deposition method of C...

Full description

Bibliographic Details
Main Author: Muhamad, Nur Amalina
Format: Book Section
Language:English
Published: Institute of Graduate Studies, UiTM 2015
Subjects:
Online Access:http://ir.uitm.edu.my/id/eprint/19331/
http://ir.uitm.edu.my/id/eprint/19331/1/ABS_NUR%20AMALINA%20MUHAMAD%20TDRA%20VOL%207%20IGS%2015.pdf
id uitm-19331
recordtype eprints
spelling uitm-193312018-06-12T07:46:40Z http://ir.uitm.edu.my/id/eprint/19331/ Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad Muhamad, Nur Amalina Malaysia This study is carried out to investigate the properties of copper (I) iodide (CuI) thin films deposited by using a novel-mist atomization method. The properties of CuI thin films studied in this research are structural, morphological, electrical and optical properties. The new deposition method of CuI thin films which is by using mist-atomization technique is carried out in order to find the suitability of CuI thin films as a p-type hole conductor for the fabrication of solid-state dye sensitized solar cells (ss-DSSCs). The CuI solution was prepared by dissolving the CuI powder in acetonitrile and deposited onto the conducting glass substrate. Several parameters investigated which are deposition flow rate and frequency, spraying method, substrate temperature, molar concentration and doping concentration to get an optimized film. All of the investigated parameters were carried out by using mist-atomization technique. The nanostructured CuI exhibit a 2-dimensional and quantum confinement effects that lead to improved properties. Further investigations reveal that the 0.05 M of CuI concentration sample was the most conductive sample of 3.93 Scm-1 with the highest crystallinity, which then becomes the set of parameters to be applied in the fabrication of solid-state dye sensitized solar cells (ss-DSSCs)… Institute of Graduate Studies, UiTM 2015 Book Section PeerReviewed text en http://ir.uitm.edu.my/id/eprint/19331/1/ABS_NUR%20AMALINA%20MUHAMAD%20TDRA%20VOL%207%20IGS%2015.pdf Muhamad, Nur Amalina (2015) Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad. In: The Doctoral Research Abstracts. IPSis Biannual Publication, 7 (7). Institute of Graduate Studies, UiTM, Shah Alam.
repository_type Digital Repository
institution_category Local University
institution Universiti Teknologi MARA
building UiTM Institutional Repository
collection Online Access
language English
topic Malaysia
spellingShingle Malaysia
Muhamad, Nur Amalina
Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
description This study is carried out to investigate the properties of copper (I) iodide (CuI) thin films deposited by using a novel-mist atomization method. The properties of CuI thin films studied in this research are structural, morphological, electrical and optical properties. The new deposition method of CuI thin films which is by using mist-atomization technique is carried out in order to find the suitability of CuI thin films as a p-type hole conductor for the fabrication of solid-state dye sensitized solar cells (ss-DSSCs). The CuI solution was prepared by dissolving the CuI powder in acetonitrile and deposited onto the conducting glass substrate. Several parameters investigated which are deposition flow rate and frequency, spraying method, substrate temperature, molar concentration and doping concentration to get an optimized film. All of the investigated parameters were carried out by using mist-atomization technique. The nanostructured CuI exhibit a 2-dimensional and quantum confinement effects that lead to improved properties. Further investigations reveal that the 0.05 M of CuI concentration sample was the most conductive sample of 3.93 Scm-1 with the highest crystallinity, which then becomes the set of parameters to be applied in the fabrication of solid-state dye sensitized solar cells (ss-DSSCs)…
format Book Section
author Muhamad, Nur Amalina
author_facet Muhamad, Nur Amalina
author_sort Muhamad, Nur Amalina
title Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
title_short Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
title_full Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
title_fullStr Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
title_full_unstemmed Fabrication of TiO₂/DYE/CuI solid-state solar cell using mist-atomized CuI nanostructures / Nur Amalina Muhamad
title_sort fabrication of tio₂/dye/cui solid-state solar cell using mist-atomized cui nanostructures / nur amalina muhamad
publisher Institute of Graduate Studies, UiTM
publishDate 2015
url http://ir.uitm.edu.my/id/eprint/19331/
http://ir.uitm.edu.my/id/eprint/19331/1/ABS_NUR%20AMALINA%20MUHAMAD%20TDRA%20VOL%207%20IGS%2015.pdf
first_indexed 2023-09-18T23:02:20Z
last_indexed 2023-09-18T23:02:20Z
_version_ 1777418256252928000