Tracking Poverty Over Time in the Absence of Comparable Consumption Data

Tracking Poverty Over Time in the Absence of Comparable Consumption Data David Stifel and Luc Christiaensen Following the endorsement by the international community of the Millennium Development Goals, there has been an increasing demand for practical methods for steadily tracking poverty. The minim...

Full description

Bibliographic Details
Main Authors: Stifel, David, Christiaensen, Luc
Format: Journal Article
Published: World Bank 2012
Subjects:
Online Access:http://hdl.handle.net/10986/4460
id okr-10986-4460
recordtype oai_dc
spelling okr-10986-44602021-04-23T14:02:17Z Tracking Poverty Over Time in the Absence of Comparable Consumption Data Stifel, David Christiaensen, Luc household budget household consumption household surveys income indicators of poverty inequality Poverty Analysis poverty mapping Rural Rural Development Tracking Poverty Over Time in the Absence of Comparable Consumption Data David Stifel and Luc Christiaensen Following the endorsement by the international community of the Millennium Development Goals, there has been an increasing demand for practical methods for steadily tracking poverty. The minimum data requirements for this methodology are the availability of a household budget survey and a series of surveys with a comparable set of asset data also contained in the budget survey. JEL codes: C81, I32 The worldwide endorsement of the Millennium Development Goals and the shift to results-based lending in supporting developing countries have intensified the importance of being able to reliably gauge the evolution of poverty. While the method is straightforward, the predicted evolution of poverty holds only under a series of stringent assumptions such as distribution-neutral growth, a correct attribution of sectoral GDP growth to households (World Bank 2005), and a close correspondence between growth observed in the national accounts and income or consumption growth measured in household surveys (Ravallion 2003; Deaton and Kozel 2005). The empirical application uses the asset information from the 1993, 1998, and 2003 Kenyan Demographic and Health Surveys and the consumption measure from the 1997 Welfare Monitoring Survey (WMS). 3 Tracking Wt by tracking xt requires essentially three steps: developing an accurate empirical model of ct as a function of xt; estimating ct k as a function of xt k, where k is a positive or negative integer; and generating an estimate of expected Wt k from the estimated ct k. 3. Comparison of these indicators across the population in rural areas, other urban localities, and Nairobi between 1993 and 2003 based on the Demographic and Health Surveys (table 4) shows substantial improvements in primary and secondary enrollment rates and stunting prevalence in rural areas, even stronger improvements in these indicators in Nairobi, and a mixed picture in other urban areas, with primary enrollment rates increasing, secondary enrollment rates falling marginally, and stunting prevalence increasing Further inspection indicates that their relative prices (in terms of the overall consumer price index) declined substantially, possibly because of technological innovation, trade liberalization, or exchange rate misalignment (in particular, real exchange rate overvaluation). Going forward, comparing economic asset-based poverty measures with those derived from household budget surveys using actual consumption data emerges as an important research agenda for applied economists to shed further light on the empirical validity of the stationarity assumption. var(b To obtain estimates of the expected welfare indicator in stage 2, a vector of t beta coefficients (bs) is first drawn from a multivariate normal distribution with a mean btGLS and variance covariance V(btGLS) and applied to the target 0 t data xt k to predict household log expenditures (xcht kbs). 2012-03-30T07:12:36Z 2012-03-30T07:12:36Z 2007-05-30 Journal Article World Bank Economic Review 1564-698X http://hdl.handle.net/10986/4460 CC BY-NC-ND 3.0 IGO http://creativecommons.org/licenses/by-nc-nd/3.0/igo World Bank World Bank Journal Article Africa Kenya
repository_type Digital Repository
institution_category Foreign Institution
institution Digital Repositories
building World Bank Open Knowledge Repository
collection World Bank
topic household budget
household consumption
household surveys
income
indicators of poverty
inequality
Poverty Analysis
poverty mapping
Rural
Rural Development
spellingShingle household budget
household consumption
household surveys
income
indicators of poverty
inequality
Poverty Analysis
poverty mapping
Rural
Rural Development
Stifel, David
Christiaensen, Luc
Tracking Poverty Over Time in the Absence of Comparable Consumption Data
geographic_facet Africa
Kenya
description Tracking Poverty Over Time in the Absence of Comparable Consumption Data David Stifel and Luc Christiaensen Following the endorsement by the international community of the Millennium Development Goals, there has been an increasing demand for practical methods for steadily tracking poverty. The minimum data requirements for this methodology are the availability of a household budget survey and a series of surveys with a comparable set of asset data also contained in the budget survey. JEL codes: C81, I32 The worldwide endorsement of the Millennium Development Goals and the shift to results-based lending in supporting developing countries have intensified the importance of being able to reliably gauge the evolution of poverty. While the method is straightforward, the predicted evolution of poverty holds only under a series of stringent assumptions such as distribution-neutral growth, a correct attribution of sectoral GDP growth to households (World Bank 2005), and a close correspondence between growth observed in the national accounts and income or consumption growth measured in household surveys (Ravallion 2003; Deaton and Kozel 2005). The empirical application uses the asset information from the 1993, 1998, and 2003 Kenyan Demographic and Health Surveys and the consumption measure from the 1997 Welfare Monitoring Survey (WMS). 3 Tracking Wt by tracking xt requires essentially three steps: developing an accurate empirical model of ct as a function of xt; estimating ct k as a function of xt k, where k is a positive or negative integer; and generating an estimate of expected Wt k from the estimated ct k. 3. Comparison of these indicators across the population in rural areas, other urban localities, and Nairobi between 1993 and 2003 based on the Demographic and Health Surveys (table 4) shows substantial improvements in primary and secondary enrollment rates and stunting prevalence in rural areas, even stronger improvements in these indicators in Nairobi, and a mixed picture in other urban areas, with primary enrollment rates increasing, secondary enrollment rates falling marginally, and stunting prevalence increasing Further inspection indicates that their relative prices (in terms of the overall consumer price index) declined substantially, possibly because of technological innovation, trade liberalization, or exchange rate misalignment (in particular, real exchange rate overvaluation). Going forward, comparing economic asset-based poverty measures with those derived from household budget surveys using actual consumption data emerges as an important research agenda for applied economists to shed further light on the empirical validity of the stationarity assumption. var(b To obtain estimates of the expected welfare indicator in stage 2, a vector of t beta coefficients (bs) is first drawn from a multivariate normal distribution with a mean btGLS and variance covariance V(btGLS) and applied to the target 0 t data xt k to predict household log expenditures (xcht kbs).
format Journal Article
author Stifel, David
Christiaensen, Luc
author_facet Stifel, David
Christiaensen, Luc
author_sort Stifel, David
title Tracking Poverty Over Time in the Absence of Comparable Consumption Data
title_short Tracking Poverty Over Time in the Absence of Comparable Consumption Data
title_full Tracking Poverty Over Time in the Absence of Comparable Consumption Data
title_fullStr Tracking Poverty Over Time in the Absence of Comparable Consumption Data
title_full_unstemmed Tracking Poverty Over Time in the Absence of Comparable Consumption Data
title_sort tracking poverty over time in the absence of comparable consumption data
publisher World Bank
publishDate 2012
url http://hdl.handle.net/10986/4460
_version_ 1764391464224161792