Analysis of transient multiexponential signals using exponential compensation deconvolution

A three-step procedure for the parameter estimation of transient multiexponential signals is proposed. The first step involves the use of the classical Gardner transform to convert the data signal into a convolution model which is deconvolved using exponential compensation deconvolution technique...

Full description

Bibliographic Details
Main Authors: Jibia, Abdussamad Umar, Salami, Momoh Jimoh Eyiomika
Format: Article
Language:English
Published: Elsevier Ltd. 2012
Subjects:
Online Access:http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/1/MEASUR1699%5B2%5D.pdf
id iium-7951
recordtype eprints
spelling iium-79512012-03-21T06:10:37Z http://irep.iium.edu.my/7951/ Analysis of transient multiexponential signals using exponential compensation deconvolution Jibia, Abdussamad Umar Salami, Momoh Jimoh Eyiomika T Technology (General) A three-step procedure for the parameter estimation of transient multiexponential signals is proposed. The first step involves the use of the classical Gardner transform to convert the data signal into a convolution model which is deconvolved using exponential compensation deconvolution technique in the second step. In the third step, eigenvector algorithms are used to process the resulting complex exponentials to obtain better estimates of decay rates and number of components. Simulation and experimental results show that this method outperforms previous approaches if a number of preprocessing parameters are correctly selected. Elsevier Ltd. 2012-01 Article PeerReviewed application/pdf en http://irep.iium.edu.my/7951/1/MEASUR1699%5B2%5D.pdf Jibia, Abdussamad Umar and Salami, Momoh Jimoh Eyiomika (2012) Analysis of transient multiexponential signals using exponential compensation deconvolution. Measurement, 45 (1). pp. 19-29. ISSN 0263-2241 http://www.sciencedirect.com/science/article/pii/S0263224111003617 doi:10.1016/j.measurement.2011.10.015
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic T Technology (General)
spellingShingle T Technology (General)
Jibia, Abdussamad Umar
Salami, Momoh Jimoh Eyiomika
Analysis of transient multiexponential signals using exponential compensation deconvolution
description A three-step procedure for the parameter estimation of transient multiexponential signals is proposed. The first step involves the use of the classical Gardner transform to convert the data signal into a convolution model which is deconvolved using exponential compensation deconvolution technique in the second step. In the third step, eigenvector algorithms are used to process the resulting complex exponentials to obtain better estimates of decay rates and number of components. Simulation and experimental results show that this method outperforms previous approaches if a number of preprocessing parameters are correctly selected.
format Article
author Jibia, Abdussamad Umar
Salami, Momoh Jimoh Eyiomika
author_facet Jibia, Abdussamad Umar
Salami, Momoh Jimoh Eyiomika
author_sort Jibia, Abdussamad Umar
title Analysis of transient multiexponential signals using exponential compensation deconvolution
title_short Analysis of transient multiexponential signals using exponential compensation deconvolution
title_full Analysis of transient multiexponential signals using exponential compensation deconvolution
title_fullStr Analysis of transient multiexponential signals using exponential compensation deconvolution
title_full_unstemmed Analysis of transient multiexponential signals using exponential compensation deconvolution
title_sort analysis of transient multiexponential signals using exponential compensation deconvolution
publisher Elsevier Ltd.
publishDate 2012
url http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/
http://irep.iium.edu.my/7951/1/MEASUR1699%5B2%5D.pdf
first_indexed 2023-09-18T20:17:30Z
last_indexed 2023-09-18T20:17:30Z
_version_ 1777407885435731968