Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia

Particulate matter (PM) plays a crucial role in altering the air quality, human health and materials. PM does not only affect human health but damages the museum's artefacts in many ways such as paint and materials deterioration, metal corrosion, fading of dyes and soiling of stone rubber, and...

Full description

Bibliographic Details
Main Authors: Mohd Din, Shamzani Affendy, KOLAPO, OTUYO MUHSIN, Othman, Rashidi
Format: Conference or Workshop Item
Language:English
Published: 2019
Subjects:
Online Access:http://irep.iium.edu.my/77182/
http://irep.iium.edu.my/77182/1/ICTMT%20PAPER%201.pdf
id iium-77182
recordtype eprints
spelling iium-771822020-01-08T03:57:23Z http://irep.iium.edu.my/77182/ Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia Mohd Din, Shamzani Affendy KOLAPO, OTUYO MUHSIN Othman, Rashidi GE Environmental Sciences NK1127.5 Preservation of art objects and antiques QD Chemistry Particulate matter (PM) plays a crucial role in altering the air quality, human health and materials. PM does not only affect human health but damages the museum's artefacts in many ways such as paint and materials deterioration, metal corrosion, fading of dyes and soiling of stone rubber, and textile. The main aim of this research is to quantify the mass concentration of suspended particulate matter in terms of respirable and inhalable particles at outdoors, indoors, and exhibition boxes of the National Museum Malaysia. This research was conducted for 32 days (16 weekdays and 16 weekends). The main target exhibition boxes for this research were those containing inorganic-based materials such as metals, stones, and ceramics. In total, 12 sample stations were surveyed, this includes three exhibition boxes each from Gallery A and B, an indoor area of both Gallery A and B, lobby and three outdoor locations at the front entrance, rear entrance, and right-wing of the building. Cyclone sampler head and Casella 7-Holes were used to capture respirable and inhalable samples, respectively. Result revealed that most of the average mass concentration obtained in all sample stations were beyond limited guidelines stated by the Department of Safety and Health (DOSH) and Department of Environment (DOE). The average mass concentrations of inhalable dust sampled at the metal and ceramic exhibition box of Gallery A at weekdays were the highest with an average mass concentration value of 0.4688 mg/m3, which is about 213 % more than the required standards. However, lower values were obtained for the respirable particles, but they were found to still beyond standard DOE guidelines for PM10. The highest respirable particles were found at the ceramic exhibition box of Gallery A with 0.3788 mg/m3 average mass concentration. The result of respirable dust to the total inhalable dust were 55.4 % and 59.7 % for weekdays and weekends, respectively. The concluding part highlights recommendations on ways to reduce the transfer PM into the indoor area of the museum to reduce soiling defects. DOE, DOSH, as well as the Ministry of Natural Resources and Environment (MONRE), can use the result of this research to come up with a procedure to reduce the effect of airborne particulate matter on the museum artefacts. Hence, reducing government expenses by reducing the total cost of cleaning procedure toward damaged artefacts. Additionally, this study is beneficial to conservationists, museum management and curators by enlightening them on ways to reduce the damaging effect caused by airborne particulate matter. 2019 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/77182/1/ICTMT%20PAPER%201.pdf Mohd Din, Shamzani Affendy and KOLAPO, OTUYO MUHSIN and Othman, Rashidi (2019) Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia. In: 1st International Conference on Tourism, Management and Technology 2019, Business School, Universiti Kuala Lumpur (UNIKL). (Unpublished)
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic GE Environmental Sciences
NK1127.5 Preservation of art objects and antiques
QD Chemistry
spellingShingle GE Environmental Sciences
NK1127.5 Preservation of art objects and antiques
QD Chemistry
Mohd Din, Shamzani Affendy
KOLAPO, OTUYO MUHSIN
Othman, Rashidi
Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
description Particulate matter (PM) plays a crucial role in altering the air quality, human health and materials. PM does not only affect human health but damages the museum's artefacts in many ways such as paint and materials deterioration, metal corrosion, fading of dyes and soiling of stone rubber, and textile. The main aim of this research is to quantify the mass concentration of suspended particulate matter in terms of respirable and inhalable particles at outdoors, indoors, and exhibition boxes of the National Museum Malaysia. This research was conducted for 32 days (16 weekdays and 16 weekends). The main target exhibition boxes for this research were those containing inorganic-based materials such as metals, stones, and ceramics. In total, 12 sample stations were surveyed, this includes three exhibition boxes each from Gallery A and B, an indoor area of both Gallery A and B, lobby and three outdoor locations at the front entrance, rear entrance, and right-wing of the building. Cyclone sampler head and Casella 7-Holes were used to capture respirable and inhalable samples, respectively. Result revealed that most of the average mass concentration obtained in all sample stations were beyond limited guidelines stated by the Department of Safety and Health (DOSH) and Department of Environment (DOE). The average mass concentrations of inhalable dust sampled at the metal and ceramic exhibition box of Gallery A at weekdays were the highest with an average mass concentration value of 0.4688 mg/m3, which is about 213 % more than the required standards. However, lower values were obtained for the respirable particles, but they were found to still beyond standard DOE guidelines for PM10. The highest respirable particles were found at the ceramic exhibition box of Gallery A with 0.3788 mg/m3 average mass concentration. The result of respirable dust to the total inhalable dust were 55.4 % and 59.7 % for weekdays and weekends, respectively. The concluding part highlights recommendations on ways to reduce the transfer PM into the indoor area of the museum to reduce soiling defects. DOE, DOSH, as well as the Ministry of Natural Resources and Environment (MONRE), can use the result of this research to come up with a procedure to reduce the effect of airborne particulate matter on the museum artefacts. Hence, reducing government expenses by reducing the total cost of cleaning procedure toward damaged artefacts. Additionally, this study is beneficial to conservationists, museum management and curators by enlightening them on ways to reduce the damaging effect caused by airborne particulate matter.
format Conference or Workshop Item
author Mohd Din, Shamzani Affendy
KOLAPO, OTUYO MUHSIN
Othman, Rashidi
author_facet Mohd Din, Shamzani Affendy
KOLAPO, OTUYO MUHSIN
Othman, Rashidi
author_sort Mohd Din, Shamzani Affendy
title Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
title_short Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
title_full Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
title_fullStr Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
title_full_unstemmed Inhalable and respirable dust mass concentration on soiled inorganic artefacts at the National Museum Malaysia
title_sort inhalable and respirable dust mass concentration on soiled inorganic artefacts at the national museum malaysia
publishDate 2019
url http://irep.iium.edu.my/77182/
http://irep.iium.edu.my/77182/1/ICTMT%20PAPER%201.pdf
first_indexed 2023-09-18T21:48:54Z
last_indexed 2023-09-18T21:48:54Z
_version_ 1777413636229169152