Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics
To date, the Smoothed Particle Hydrodynamics (SPH) method which is mesh-less and fully Lagrangian in nature has been mainly applied in solving solid heat conduction problem and flow convection problem separately. In the current work, we have implemented the Weakly Compressible Smoothed Particle Hydr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/1/Ng%20et%20al.%20-%202018%20-%20Fluid-Solid%20Conjugate%20Heat%20Transfer%20Modelling%20using%20Weakly%20Compressible%20Smoothed%20Particle%20Hydrodynamics%20-%20Internation.pdf http://irep.iium.edu.my/72023/8/72023%20Fluid-Solid%20conjugate%20SCOPUS.pdf |
id |
iium-72023 |
---|---|
recordtype |
eprints |
spelling |
iium-720232020-02-26T19:51:47Z http://irep.iium.edu.my/72023/ Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics Ng, Khai Ching Ng, Y.L. Sheu, Tony Wen Hann Mukhtar, Azfarizal TA329 Engineering mathematics. Engineering analysis To date, the Smoothed Particle Hydrodynamics (SPH) method which is mesh-less and fully Lagrangian in nature has been mainly applied in solving solid heat conduction problem and flow convection problem separately. In the current work, we have implemented the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method to solve internal flow problem involving fluid-solid Conjugate Heat Transfer (CHT). In order to ensure heat flux continuity across the interface separating two different materials, the harmonic mean value of thermal conductivities was adopted when modelling the heat transfer between fluid and solid bodies. On the modelling of non-isothermal hydrodynamically fully-developed channel flow, the Dirichlet inlet temperature boundary condition was implemented without having to build a separate temperature reset zone as proposed in the open literature. From the current study, we have found that the particle shifting algorithm is efficient to address the tensile instability problem encountered when simulating flow at high Reynolds number. The WCSPH results were compared against the established analytical and numerical solutions and good agreement was found. The idea of extending the WCSPH method to simulate the flow and heat transfer in parallel-flow and counter-flow heat exchangers was pursued in the current study as well. Elsevier 2019-02 Article PeerReviewed application/pdf en http://irep.iium.edu.my/72023/1/Ng%20et%20al.%20-%202018%20-%20Fluid-Solid%20Conjugate%20Heat%20Transfer%20Modelling%20using%20Weakly%20Compressible%20Smoothed%20Particle%20Hydrodynamics%20-%20Internation.pdf application/pdf en http://irep.iium.edu.my/72023/8/72023%20Fluid-Solid%20conjugate%20SCOPUS.pdf Ng, Khai Ching and Ng, Y.L. and Sheu, Tony Wen Hann and Mukhtar, Azfarizal (2019) Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics. International Journal of Mechanical Sciences, 151. pp. 772-784. ISSN 0020-7403 https://www.sciencedirect.com/science/article/pii/S002074031833443X 10.1016/j.ijmecsci.2018.12.028 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English |
topic |
TA329 Engineering mathematics. Engineering analysis |
spellingShingle |
TA329 Engineering mathematics. Engineering analysis Ng, Khai Ching Ng, Y.L. Sheu, Tony Wen Hann Mukhtar, Azfarizal Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
description |
To date, the Smoothed Particle Hydrodynamics (SPH) method which is mesh-less and fully Lagrangian in nature has been mainly applied in solving solid heat conduction problem and flow convection problem separately. In the current work, we have implemented the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method to solve internal flow problem involving fluid-solid Conjugate Heat Transfer (CHT). In order to ensure heat flux continuity across the interface separating two different materials, the harmonic mean value of thermal conductivities was adopted when modelling the heat transfer between fluid and solid bodies. On the modelling of non-isothermal hydrodynamically fully-developed channel flow, the Dirichlet inlet temperature boundary condition was implemented without having to build a separate temperature reset zone as proposed in the open literature. From the current study, we have found that the particle shifting algorithm is efficient to address the tensile instability problem encountered when simulating flow at high Reynolds number. The WCSPH results were compared against the established analytical and numerical solutions and good agreement was found. The idea of extending the WCSPH method to simulate the flow and heat transfer in parallel-flow and counter-flow heat exchangers was pursued in the current study as well. |
format |
Article |
author |
Ng, Khai Ching Ng, Y.L. Sheu, Tony Wen Hann Mukhtar, Azfarizal |
author_facet |
Ng, Khai Ching Ng, Y.L. Sheu, Tony Wen Hann Mukhtar, Azfarizal |
author_sort |
Ng, Khai Ching |
title |
Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
title_short |
Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
title_full |
Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
title_fullStr |
Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
title_full_unstemmed |
Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
title_sort |
fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics |
publisher |
Elsevier |
publishDate |
2019 |
url |
http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/ http://irep.iium.edu.my/72023/1/Ng%20et%20al.%20-%202018%20-%20Fluid-Solid%20Conjugate%20Heat%20Transfer%20Modelling%20using%20Weakly%20Compressible%20Smoothed%20Particle%20Hydrodynamics%20-%20Internation.pdf http://irep.iium.edu.my/72023/8/72023%20Fluid-Solid%20conjugate%20SCOPUS.pdf |
first_indexed |
2023-09-18T21:42:08Z |
last_indexed |
2023-09-18T21:42:08Z |
_version_ |
1777413210131922944 |