On dominant contractions and a generalization of the zero–two law

Zaharopol proved the following result: let T, S : L1(X,F,μ) → L1(X,F,μ) be two positive contractions such that T ≤ S. If ||S−T|| < 1 then ||Sn − T n||<1 for all n ∈ N. In the present paper we generalize this result to multi-parameter contractions acting on L1. As an application of that result...

Full description

Bibliographic Details
Main Author: Mukhamedov, Farrukh
Format: Article
Language:English
Published: Birkhäuser Basel 2011
Subjects:
Online Access:http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/1/mf-positivity%282011%29.pdf
id iium-6518
recordtype eprints
spelling iium-65182011-11-21T18:21:03Z http://irep.iium.edu.my/6518/ On dominant contractions and a generalization of the zero–two law Mukhamedov, Farrukh QA Mathematics Zaharopol proved the following result: let T, S : L1(X,F,μ) → L1(X,F,μ) be two positive contractions such that T ≤ S. If ||S−T|| < 1 then ||Sn − T n||<1 for all n ∈ N. In the present paper we generalize this result to multi-parameter contractions acting on L1. As an application of that result we prove a generalization of the “zero–two” law. Birkhäuser Basel 2011-09 Article PeerReviewed application/pdf en http://irep.iium.edu.my/6518/1/mf-positivity%282011%29.pdf Mukhamedov, Farrukh (2011) On dominant contractions and a generalization of the zero–two law. Positivity, 15 (3). pp. 497-508. ISSN 1385-1292 (P), 1572-9281 (O) http://www.springerlink.com/content/x1q75jh18420l20u/ 10.1007/s11117-010-0102-8
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic QA Mathematics
spellingShingle QA Mathematics
Mukhamedov, Farrukh
On dominant contractions and a generalization of the zero–two law
description Zaharopol proved the following result: let T, S : L1(X,F,μ) → L1(X,F,μ) be two positive contractions such that T ≤ S. If ||S−T|| < 1 then ||Sn − T n||<1 for all n ∈ N. In the present paper we generalize this result to multi-parameter contractions acting on L1. As an application of that result we prove a generalization of the “zero–two” law.
format Article
author Mukhamedov, Farrukh
author_facet Mukhamedov, Farrukh
author_sort Mukhamedov, Farrukh
title On dominant contractions and a generalization of the zero–two law
title_short On dominant contractions and a generalization of the zero–two law
title_full On dominant contractions and a generalization of the zero–two law
title_fullStr On dominant contractions and a generalization of the zero–two law
title_full_unstemmed On dominant contractions and a generalization of the zero–two law
title_sort on dominant contractions and a generalization of the zero–two law
publisher Birkhäuser Basel
publishDate 2011
url http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/
http://irep.iium.edu.my/6518/1/mf-positivity%282011%29.pdf
first_indexed 2023-09-18T20:15:30Z
last_indexed 2023-09-18T20:15:30Z
_version_ 1777407759791161344