Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility

Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the main challenge remains at ensuring the surface biocompatibility with cells. Polycaprolactone (PCL), a biodegradable polymer, has received considerable attention because of its excellent...

Full description

Bibliographic Details
Main Authors: Samsudin, Nurhusna, Hashim, Yumi Zuhanis Has-Yun, Arifin, Mohd Azmir, Mel, Maizirwan, Mohd. Salleh, Hamzah, Nordin, Norshariza, Sopyan, Iis, Jimat, Dzun Noraini
Format: Article
Language:English
English
Published: Penerbit UTM Press 2017
Subjects:
Online Access:http://irep.iium.edu.my/59803/
http://irep.iium.edu.my/59803/
http://irep.iium.edu.my/59803/1/JurTek%202017.pdf
http://irep.iium.edu.my/59803/7/59803-Statistical%20optimization%20of%20gelatin%20immobilisation.pdf
id iium-59803
recordtype eprints
spelling iium-598032018-05-17T07:20:39Z http://irep.iium.edu.my/59803/ Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility Samsudin, Nurhusna Hashim, Yumi Zuhanis Has-Yun Arifin, Mohd Azmir Mel, Maizirwan Mohd. Salleh, Hamzah Nordin, Norshariza Sopyan, Iis Jimat, Dzun Noraini TA164 Bioengineering Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the main challenge remains at ensuring the surface biocompatibility with cells. Polycaprolactone (PCL), a biodegradable polymer, has received considerable attention because of its excellent mechanical properties and degradation kinetics that suit various applications, but its non-polar hydrocarbon moiety renders it sub-optimal for cell attachment. In this present study, the aim was to improve biocompatibility of PCL microcarrier by introducing oxygen functional group via ultraviolet irradiation and ozone aeration (UV/O3 system) to allow covalent immobilization of gelatin on the PCL microcarrier surface. Respond surface methodology was used as a statistical approach to optimized parameters that effect the immobilization of gelatin. The parameters used to maximized amount of gelatin immobilize were the mol ratio of COOH:EDAC, NHS concentration and gelatin concentration. The optimum conditions for maximum amount of gelatin (1797.33 μg/g) on the surface of PCL were as follows: 1.5 of COOH:EDAC ratio, 10 mM NHS concentration and, 80 mg/ml gelatin. The result shows that gelatin coated PCL microcarrier promote more and rapid cell adhesion with density of 16.5 ×105 cells/ml as compared to raw PCL microcarrier (2.4×105cells/ml) and UV/O3 treated PCL microcarrier (4.25×105cells/ml). Therefore, immobilization of gelatin with optimized parameters onto PCL microcarrier improved biocompatibility of PCL microcarrier. Penerbit UTM Press 2017-09 Article PeerReviewed application/pdf en http://irep.iium.edu.my/59803/1/JurTek%202017.pdf application/pdf en http://irep.iium.edu.my/59803/7/59803-Statistical%20optimization%20of%20gelatin%20immobilisation.pdf Samsudin, Nurhusna and Hashim, Yumi Zuhanis Has-Yun and Arifin, Mohd Azmir and Mel, Maizirwan and Mohd. Salleh, Hamzah and Nordin, Norshariza and Sopyan, Iis and Jimat, Dzun Noraini (2017) Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility. Jurnal Teknologi, 79 (6). pp. 167-175. ISSN 2180-3722 http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/10417/6222
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
English
topic TA164 Bioengineering
spellingShingle TA164 Bioengineering
Samsudin, Nurhusna
Hashim, Yumi Zuhanis Has-Yun
Arifin, Mohd Azmir
Mel, Maizirwan
Mohd. Salleh, Hamzah
Nordin, Norshariza
Sopyan, Iis
Jimat, Dzun Noraini
Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
description Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the main challenge remains at ensuring the surface biocompatibility with cells. Polycaprolactone (PCL), a biodegradable polymer, has received considerable attention because of its excellent mechanical properties and degradation kinetics that suit various applications, but its non-polar hydrocarbon moiety renders it sub-optimal for cell attachment. In this present study, the aim was to improve biocompatibility of PCL microcarrier by introducing oxygen functional group via ultraviolet irradiation and ozone aeration (UV/O3 system) to allow covalent immobilization of gelatin on the PCL microcarrier surface. Respond surface methodology was used as a statistical approach to optimized parameters that effect the immobilization of gelatin. The parameters used to maximized amount of gelatin immobilize were the mol ratio of COOH:EDAC, NHS concentration and gelatin concentration. The optimum conditions for maximum amount of gelatin (1797.33 μg/g) on the surface of PCL were as follows: 1.5 of COOH:EDAC ratio, 10 mM NHS concentration and, 80 mg/ml gelatin. The result shows that gelatin coated PCL microcarrier promote more and rapid cell adhesion with density of 16.5 ×105 cells/ml as compared to raw PCL microcarrier (2.4×105cells/ml) and UV/O3 treated PCL microcarrier (4.25×105cells/ml). Therefore, immobilization of gelatin with optimized parameters onto PCL microcarrier improved biocompatibility of PCL microcarrier.
format Article
author Samsudin, Nurhusna
Hashim, Yumi Zuhanis Has-Yun
Arifin, Mohd Azmir
Mel, Maizirwan
Mohd. Salleh, Hamzah
Nordin, Norshariza
Sopyan, Iis
Jimat, Dzun Noraini
author_facet Samsudin, Nurhusna
Hashim, Yumi Zuhanis Has-Yun
Arifin, Mohd Azmir
Mel, Maizirwan
Mohd. Salleh, Hamzah
Nordin, Norshariza
Sopyan, Iis
Jimat, Dzun Noraini
author_sort Samsudin, Nurhusna
title Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
title_short Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
title_full Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
title_fullStr Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
title_full_unstemmed Statistical optimization of gelatin immobilization on modified surface PCL microcarrier to improve PCL microcarrier compatibility
title_sort statistical optimization of gelatin immobilization on modified surface pcl microcarrier to improve pcl microcarrier compatibility
publisher Penerbit UTM Press
publishDate 2017
url http://irep.iium.edu.my/59803/
http://irep.iium.edu.my/59803/
http://irep.iium.edu.my/59803/1/JurTek%202017.pdf
http://irep.iium.edu.my/59803/7/59803-Statistical%20optimization%20of%20gelatin%20immobilisation.pdf
first_indexed 2023-09-18T21:24:45Z
last_indexed 2023-09-18T21:24:45Z
_version_ 1777412116591935488