Receiver operating characteristics measure for the recognition of stuttering dysfluencies using line spectral frequencies

Stuttering is a motor-speech disorder that has features in common with other motor control disorders such as dystonia, Parkinson’s disease, and Tourette’s syndrome. Stuttering results from complex interactions between factors such as motor, language, emotions, and genetic systems. This study used Li...

Full description

Bibliographic Details
Main Authors: Alang Md Rashid, Nahrul Khair, Alim, Sabur Ajibola, Nik Hashim, Nik Nur Wahidah, Sediono, Wahju
Format: Article
Language:English
English
Published: Kulliyyah of Engineering, International Islamic University Malaysia (IIUM) 2017
Subjects:
Online Access:http://irep.iium.edu.my/57382/
http://irep.iium.edu.my/57382/
http://irep.iium.edu.my/57382/1/p.sed.iium_ej.2017.stuttering_dysfluencies.pdf
http://irep.iium.edu.my/57382/7/57382_Receiver%20operating%20characteristics%20measure%20for%20the%20recognition%20of%20stuttering%20dysfluencies%20using%20line%20spectral%20frequencies_SCOPUS.pdf
Description
Summary:Stuttering is a motor-speech disorder that has features in common with other motor control disorders such as dystonia, Parkinson’s disease, and Tourette’s syndrome. Stuttering results from complex interactions between factors such as motor, language, emotions, and genetic systems. This study used Line Spectral Frequency (LSF) for feature extraction, while using three classifiers for the identification purpose, Multilayer Perceptron (MLP), Recurrent Neural Network (RNN) and Radial Basis Function (RBF). The UCLASS (University College London Archive of Stuttered Speech) release 1 was used as the database in this research. These recordings were from people of ages ranging from 12y11m to 19y5m, who were referred to clinics in London for assessment of their stuttering. The performance metrics used for interpreting the results are sensitivity, accuracy, precision, and misclassification rate. Only M1 and M2 had below 100% sensitivity for RBF. The sensitivity of M1 was found to be between 40% & 60%, therefore categorized as moderate, while that of M2 falls between 60% & 80%, classed as substantial. Overall, RBF outperforms the two other classifiers, MLP and RNN for all the performance metrics considered. Gagap adalah gangguan motor pertuturan, mempunyai ciri-ciri yang sama dengan lain-lain gangguan kawalan motor seperti dystonia, penyakit Parkinson dan sindrom Tourette. Keputusan kegagapan daripada interaksi kompleks antara faktor-faktor seperti motor, bahasa, emosi dan genetik. Kajian ini menggunakan Frekuensi Line spektral (LSF) untuk pengekstrakan ciri, semasa menggunakan tiga penjodoh untuk tujuan mengenal pasti, Multilayer Perceptron (MLP), Rangkaian Neural Berulang (RNN) dan Radial Asas Fungsi (RBF). The UCLASS (University College London Arkib Stuttered Ucapan) melepaskan 1 digunakan sebagai pangkalan data dalam kajian ini. Ini rakaman adalah dari orang-orang peringkat umur 12y11m untuk 19y5m, yang dirujuk kepada klinik di London untuk penilaian kegagapan mereka. Metrik prestasi yang digunakan untuk mentafsir keputusan yang sensitif, ketepatan, ketepatan dan kadar misclassification. Hanya M1 dan M2 mempunyai di bawah 100% kepekaan untuk RBF. Kepekaan M1 didapati antara 40% & 60%, oleh itu dikategorikan sebagai sederhana, manakala M2 jatuh antara 60% & 80%, dikelaskan sebagai besar. Secara keseluruhan, RBF melebihi performa dua penjodoh lain, MLP dan RNN untuk semua metrik prestasi dipertimbangkan.