Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance

When study variances are not reported or ‘missing”, it is common practice in meta analysis to assume that the missing variances are missing completely at random (MCAR). In practice, however, it is possible that the variances are not missing completely at random (NMAR). In this paper, we examine, ana...

Full description

Bibliographic Details
Main Author: Nik Idris, Nik Ruzni
Format: Conference or Workshop Item
Language:English
Published: 2010
Subjects:
Online Access:http://irep.iium.edu.my/5551/
http://irep.iium.edu.my/5551/
http://irep.iium.edu.my/5551/1/skskm2010_manu.pdf
id iium-5551
recordtype eprints
spelling iium-55512011-11-22T00:39:18Z http://irep.iium.edu.my/5551/ Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance Nik Idris, Nik Ruzni HA29 Theory and method of social science statistics When study variances are not reported or ‘missing”, it is common practice in meta analysis to assume that the missing variances are missing completely at random (MCAR). In practice, however, it is possible that the variances are not missing completely at random (NMAR). In this paper, we examine, analytically, the biases introduce in the meta analysis estimates when the missing study variances occur with non-random missing mechanism (MNAR), namely, when the magnitude of the missing variances are mostly larger than those that are reported. In meta analysis, this is more likely to occur in studies which carry larger variances. We looked at two common approaches in handling this problem, namely, the missing variances are imputed using the mean imputation, and the studies with missing study-variances are omitted from the analysis. The results suggest that for the estimate of the variance of the effect size, if the magnitude of the study-variances that are missing are mostly larger than those that are reported, the variance of the effect size will be underestimated. Thus under MNAR, the mean imputation gives false impression of precision as the estimated variance of the overall effect is too small. On the other hand, if the missing variances are mostly smaller, the variance will be overestimated. 2010-12-21 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/5551/1/skskm2010_manu.pdf Nik Idris, Nik Ruzni (2010) Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance. In: Seminar Kebangsaan Sains Komputer Dan Matematik 2010, 21-22 December 2010, Kota Kinabalu, Sabah. http://www.skskm.net
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic HA29 Theory and method of social science statistics
spellingShingle HA29 Theory and method of social science statistics
Nik Idris, Nik Ruzni
Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
description When study variances are not reported or ‘missing”, it is common practice in meta analysis to assume that the missing variances are missing completely at random (MCAR). In practice, however, it is possible that the variances are not missing completely at random (NMAR). In this paper, we examine, analytically, the biases introduce in the meta analysis estimates when the missing study variances occur with non-random missing mechanism (MNAR), namely, when the magnitude of the missing variances are mostly larger than those that are reported. In meta analysis, this is more likely to occur in studies which carry larger variances. We looked at two common approaches in handling this problem, namely, the missing variances are imputed using the mean imputation, and the studies with missing study-variances are omitted from the analysis. The results suggest that for the estimate of the variance of the effect size, if the magnitude of the study-variances that are missing are mostly larger than those that are reported, the variance of the effect size will be underestimated. Thus under MNAR, the mean imputation gives false impression of precision as the estimated variance of the overall effect is too small. On the other hand, if the missing variances are mostly smaller, the variance will be overestimated.
format Conference or Workshop Item
author Nik Idris, Nik Ruzni
author_facet Nik Idris, Nik Ruzni
author_sort Nik Idris, Nik Ruzni
title Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
title_short Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
title_full Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
title_fullStr Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
title_full_unstemmed Estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
title_sort estimating the bias in meta analysis estimates for continuous data with non-random missing study variance
publishDate 2010
url http://irep.iium.edu.my/5551/
http://irep.iium.edu.my/5551/
http://irep.iium.edu.my/5551/1/skskm2010_manu.pdf
first_indexed 2023-09-18T20:14:12Z
last_indexed 2023-09-18T20:14:12Z
_version_ 1777407677917298688