Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains
It was conjectured in the paper “Stationary probability vec-tors of higher-order Markov chains” (Li and Zhang, 2015[7])that if the set of stationary vectors of the second-order Markov chain contains k-interior points of the (k−1)-dimensional face of the simplex Ωnthen every vector in the (k−1)-dimen...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier Science Inc
2016
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/1/Counterexamples_of_QSO_---_LAA.pdf http://irep.iium.edu.my/51166/4/51166_Counterexamples_wos_scopus.pdf |
id |
iium-51166 |
---|---|
recordtype |
eprints |
spelling |
iium-511662017-04-10T02:21:55Z http://irep.iium.edu.my/51166/ Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains Saburov, Mansoor Yusof, Nur Atikah QA Mathematics It was conjectured in the paper “Stationary probability vec-tors of higher-order Markov chains” (Li and Zhang, 2015[7])that if the set of stationary vectors of the second-order Markov chain contains k-interior points of the (k−1)-dimensional face of the simplex Ωnthen every vector in the (k−1)-dimensional face is a stationary vector. In this paper, we provide coun-terexamples to this conjecture. Elsevier Science Inc 2016-06-10 Article PeerReviewed application/pdf en http://irep.iium.edu.my/51166/1/Counterexamples_of_QSO_---_LAA.pdf application/pdf en http://irep.iium.edu.my/51166/4/51166_Counterexamples_wos_scopus.pdf Saburov, Mansoor and Yusof, Nur Atikah (2016) Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains. Linear Algebra and its Applications, 507. pp. 153-157. ISSN 0024-3795 http://www.sciencedirect.com/science/article/pii/S0024379516302294 10.1016/j.laa.2016.06.012 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Saburov, Mansoor Yusof, Nur Atikah Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
description |
It was conjectured in the paper “Stationary probability vec-tors of higher-order Markov chains” (Li and Zhang, 2015[7])that if the set of stationary vectors of the second-order Markov chain contains k-interior points of the (k−1)-dimensional face of the simplex Ωnthen every vector in the (k−1)-dimensional face is a stationary vector. In this paper, we provide coun-terexamples to this conjecture. |
format |
Article |
author |
Saburov, Mansoor Yusof, Nur Atikah |
author_facet |
Saburov, Mansoor Yusof, Nur Atikah |
author_sort |
Saburov, Mansoor |
title |
Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
title_short |
Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
title_full |
Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
title_fullStr |
Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
title_full_unstemmed |
Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains |
title_sort |
counterexamples to the conjecture on stationary probability vectors of the second-order markov chains |
publisher |
Elsevier Science Inc |
publishDate |
2016 |
url |
http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/ http://irep.iium.edu.my/51166/1/Counterexamples_of_QSO_---_LAA.pdf http://irep.iium.edu.my/51166/4/51166_Counterexamples_wos_scopus.pdf |
first_indexed |
2023-09-18T21:12:24Z |
last_indexed |
2023-09-18T21:12:24Z |
_version_ |
1777411340253528064 |