Optical biosensors prospective based on Bragg grating polymer waveguide

In this work, we demonstrate the potential of Bragg grating polymer waveguide as an optical biosensor. Visible wavelength region at 650 nm is used as a centre wavelength because it is commonly used in biological and chemical sensing for both label and label-free sensing. The Bragg polymer waveguide...

Full description

Bibliographic Details
Main Authors: Mohd Salleh, Mohd Hazimin, Mohd Salleh, Mohd Haziq, Abdul Hadi, Muhammad Salihi,
Format: Article
Language:English
Published: Universiti Teknologi Malaysia 2016
Subjects:
Online Access:http://irep.iium.edu.my/50093/
http://irep.iium.edu.my/50093/
http://irep.iium.edu.my/50093/
http://irep.iium.edu.my/50093/1/7482-20579-1-PB.pdf
Description
Summary:In this work, we demonstrate the potential of Bragg grating polymer waveguide as an optical biosensor. Visible wavelength region at 650 nm is used as a centre wavelength because it is commonly used in biological and chemical sensing for both label and label-free sensing. The Bragg polymer waveguide structure is simulated using RSoft optical design and analysis software. The results show that there is a transmission drop with a 3 dB bandwidth of 661.0 nm when the surrounding refractive index is 1.33. The specific wavelength (transmission drop) is shifted to 724.2 nm when we increased the surrounding medium into 1.43 to mimic the bioanalytes solution. Simulation result shows that the wavelength shift was approximately 63.2 nm for every 0.1 increasing of surrounding refractive index. The Bragg grating polymer waveguide was fabricated by using electron beam lithography. Then, the fabricated devices were easily integrated within microfluidic systems in order to validate the wavelength shift. From the experiments, the wavelength shift occurred approximately 20.3 nm over 0.1 increment of refractive index. The discrepancies were likely due to the accumulation of sucrose solution on top and sidewall of the sensing area, the insertion loss between input and output coupling of the waveguide interface that induced the noise to signal ratio. Where we know that, is impossible to happen in simulation. Thus both simulation and experimental results strongly indicate that Bragg grating polymer waveguide structure at visible wavelength region have a potential for label or label-free optical biosensing applications Dalam kajian ini, kami menunjukkan potensi pandu gelombang berdasarkan parutan Bragg sebagai biopenderia optik. Kawasan panjang gelombang yang boleh dilihat iaitu pada 650 nm telah digunakan sebagai panjang gelombang pusat kerana ia seringkali digunakan dalam kajian yang melibatkan penderiaan biologi dan kimia untuk keduaVdua label dan bebas label. Struktur parutan Bragg yang menggunakan bahan polimer disimulasi menggunakan perisian rekabentuk optik dan analisis RSoft. Hasil kajian menunjukkan bahawa terdapat penurunan kadar keamatan cahaya sebanyak 3 dB pada panjang gelombang 661.0 nm apabila indeks biasan persekitaran penderia adalah 1.33. Pada panjang gelombang yang telah ditentukan, ia didapati bahawa beralih ke posisi 724.2 nm apabila kami meningkatkan indeks biasan medium sekeliling kepada 1.43. Ini adalah bertujuan untuk mensimulasikan interaksi biologi terhadap penderia. Hasil simulasi menunjukkan bahawa peralihan panjang gelombang adalah kiraVkira 63.2 nm bagi setiap peningkatan 0.1 indeks biasan persekitaran penderia. Setelah itu, parutan Bragg polimer difabrikasi dengan menggunakan kaedah elektron litografi. Kemudian, peranti yang telah difabrikasi, disepadukan dalam sistem bendalir mikro bagi mengesahkan perubahan yang berlaku. Daripada eksperimen yang telah dijalankan, peralihan panjang gelombang berlaku sebanyak 20.3 nm dengan kenaikan index biasan sebanyak 0.1. Perbezaan nilai peralihan yang diperolehi daripada simulasi dan experimen mungkin disebabkan oleh pengumpulan larutan sukrosa di atas dan sisi kawasan sensing, kehilangan keamatan cahaya semasa penjajaran optik antara input dan output penderia. Keadaan ini meningkatkan isyarat kepada hingar semasa eksperimen dijalankan. Di mana kita tahu bahawa, adalah mustahil untuk berlaku dalam kaedah simulasi. Namun demikian, boleh disimpulkan bahawa keduaVdua keputusan simulasi dan eksperimen menunjukkan bahawa gabungan struktur parutan Bragg dengan menggunakan panjang gelombang yang boleh dilihat mempunyai potensi dalam aplikasi penderia biologi/kimia yang menggunakan label atau bebas label.