The development of human biometric identification using acceleration plethysmogram
This study explicates the practicability of using acceleration plethysmogram (APG) signal in biometric identification. The introduction of APG signal is initiated from the congenital of photoplethysmogram (PPG) signal since APG signal has been widely known as the second derivative of PPG signal. Pre...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Asian Research Publishing Network (ARPN)
2015
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/47039/ http://irep.iium.edu.my/47039/ http://irep.iium.edu.my/47039/1/jeas_1215_3190.pdf |
id |
iium-47039 |
---|---|
recordtype |
eprints |
spelling |
iium-470392017-06-20T02:39:55Z http://irep.iium.edu.my/47039/ The development of human biometric identification using acceleration plethysmogram Sidek, Khairul Azami Zainal, Nur Izzati Mohd Azam, Siti Nurfarah Ain Jaafar, Nur Azua Liyana TK7885 Computer engineering This study explicates the practicability of using acceleration plethysmogram (APG) signal in biometric identification. The introduction of APG signal is initiated from the congenital of photoplethysmogram (PPG) signal since APG signal has been widely known as the second derivative of PPG signal. Previous researchers claimed that APG signal elucidates more information as compared to PPG signal. For this reason, the robustness and reliability of APG signal as biometric recognition is demonstrated. A total of 10 subjects obtained from MIMIC II WAFEFORM Database (MIMIC2WDB) which provides PPG signals with a 125 Hz sampling frequency are used as test samples. The signals are then differentiated twice to obtain the APG signals. Then, discriminative features are extracted from the APG morphology. Finally, these APG samples were classified using commonly known classification techniques to identify individuals. Based on the experimentation results, APG signal when using Multilayer Perceptron gives an identification rate of 98% as compared to PPG signal of 76% for the same waveform. This outcome suggests the feasibility and robustness of APG signals as a biometric modality as an alternative to current techniques. Asian Research Publishing Network (ARPN) 2015-12 Article PeerReviewed application/pdf en http://irep.iium.edu.my/47039/1/jeas_1215_3190.pdf Sidek, Khairul Azami and Zainal, Nur Izzati and Mohd Azam, Siti Nurfarah Ain and Jaafar, Nur Azua Liyana (2015) The development of human biometric identification using acceleration plethysmogram. ARPN Journal of Engineering and Applied Sciences, 10 (23). pp. 17438-17443. ISSN 1819-6608 http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1215_3190.pdf |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English |
topic |
TK7885 Computer engineering |
spellingShingle |
TK7885 Computer engineering Sidek, Khairul Azami Zainal, Nur Izzati Mohd Azam, Siti Nurfarah Ain Jaafar, Nur Azua Liyana The development of human biometric identification using acceleration plethysmogram |
description |
This study explicates the practicability of using acceleration plethysmogram (APG) signal in biometric identification. The introduction of APG signal is initiated from the congenital of photoplethysmogram (PPG) signal since APG signal has been widely known as the second derivative of PPG signal. Previous researchers claimed that APG signal elucidates more information as compared to PPG signal. For this reason, the robustness and reliability of APG signal as biometric recognition is demonstrated. A total of 10 subjects obtained from MIMIC II WAFEFORM Database (MIMIC2WDB) which provides PPG signals with a 125 Hz sampling frequency are used as test samples. The signals are then differentiated twice to obtain the APG signals. Then, discriminative features are extracted from the APG morphology. Finally, these APG samples were classified using commonly known classification techniques to identify individuals. Based
on the experimentation results, APG signal when using Multilayer Perceptron gives an identification rate of 98% as compared to PPG signal of 76% for the same waveform. This outcome suggests the feasibility and robustness of APG signals as a biometric modality as an alternative to current techniques. |
format |
Article |
author |
Sidek, Khairul Azami Zainal, Nur Izzati Mohd Azam, Siti Nurfarah Ain Jaafar, Nur Azua Liyana |
author_facet |
Sidek, Khairul Azami Zainal, Nur Izzati Mohd Azam, Siti Nurfarah Ain Jaafar, Nur Azua Liyana |
author_sort |
Sidek, Khairul Azami |
title |
The development of human biometric identification using acceleration plethysmogram |
title_short |
The development of human biometric identification using acceleration plethysmogram |
title_full |
The development of human biometric identification using acceleration plethysmogram |
title_fullStr |
The development of human biometric identification using acceleration plethysmogram |
title_full_unstemmed |
The development of human biometric identification using acceleration plethysmogram |
title_sort |
development of human biometric identification using acceleration plethysmogram |
publisher |
Asian Research Publishing Network (ARPN) |
publishDate |
2015 |
url |
http://irep.iium.edu.my/47039/ http://irep.iium.edu.my/47039/ http://irep.iium.edu.my/47039/1/jeas_1215_3190.pdf |
first_indexed |
2023-09-18T21:06:56Z |
last_indexed |
2023-09-18T21:06:56Z |
_version_ |
1777410996074184704 |