Statistical model and prediction of pineapple plant weight

In the Great Giant Pineapples Company, the problem of prediction of weight of fruits at harvest has become a long critical problem for the planning, cannery and marketing. The company has been trying for a long time to find the best method to predict the production of pineapple weight per hectare by...

Full description

Bibliographic Details
Main Authors: Usman, Mustofa, Elfaki, Faiz Ahmed Mohamed, Wamiliana, Wamiliana, Fauzan, Fauzan, Daoud, Jamal Ibrahim
Format: Article
Language:English
Published: Sci.Int.(Lahore) 2015
Subjects:
Online Access:http://irep.iium.edu.my/42862/
http://irep.iium.edu.my/42862/
http://irep.iium.edu.my/42862/1/Mustofa_Usman--SI.pdf
id iium-42862
recordtype eprints
spelling iium-428622017-11-21T07:43:29Z http://irep.iium.edu.my/42862/ Statistical model and prediction of pineapple plant weight Usman, Mustofa Elfaki, Faiz Ahmed Mohamed Wamiliana, Wamiliana Fauzan, Fauzan Daoud, Jamal Ibrahim QA Mathematics In the Great Giant Pineapples Company, the problem of prediction of weight of fruits at harvest has become a long critical problem for the planning, cannery and marketing. The company has been trying for a long time to find the best method to predict the production of pineapple weight per hectare by using the information of plant weight. It is well known that the fruit weight has linear relationship with the pineapples plant weight. In this study, the modeling and prediction of pineapples plant weight will be discussed based on some factors. The experiment have been conducted in four difference locations and cultivar classes and varieties, namely location 094D with cultivar class Medium Crown and variety GP1, location 126C with cultivar class Medium Crown and variety GP1, location 158H with cultivar class Small Crown and variety GP1and in location 576D with cultivar class Medium Crown and variety GP1. The age of plants are 15 months of age. From each location 40 data has been taken by method of systematic random sampling. Than from each datum the plant weight (W) in kg, number of perfect leaves (NPL), the length of the longest leaf (LLL) in cm, and the width of the longest leaf (WLL) in cm are measured. From the analysis the plant weight best predicted by using variables NPL, LLL, and WLL in all locations. Sci.Int.(Lahore) 2015-04 Article PeerReviewed application/pdf en http://irep.iium.edu.my/42862/1/Mustofa_Usman--SI.pdf Usman, Mustofa and Elfaki, Faiz Ahmed Mohamed and Wamiliana, Wamiliana and Fauzan, Fauzan and Daoud, Jamal Ibrahim (2015) Statistical model and prediction of pineapple plant weight. Science International Lahore, 27 (2). pp. 943-949. ISSN 1013-5316 http://sci-int.com/
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic QA Mathematics
spellingShingle QA Mathematics
Usman, Mustofa
Elfaki, Faiz Ahmed Mohamed
Wamiliana, Wamiliana
Fauzan, Fauzan
Daoud, Jamal Ibrahim
Statistical model and prediction of pineapple plant weight
description In the Great Giant Pineapples Company, the problem of prediction of weight of fruits at harvest has become a long critical problem for the planning, cannery and marketing. The company has been trying for a long time to find the best method to predict the production of pineapple weight per hectare by using the information of plant weight. It is well known that the fruit weight has linear relationship with the pineapples plant weight. In this study, the modeling and prediction of pineapples plant weight will be discussed based on some factors. The experiment have been conducted in four difference locations and cultivar classes and varieties, namely location 094D with cultivar class Medium Crown and variety GP1, location 126C with cultivar class Medium Crown and variety GP1, location 158H with cultivar class Small Crown and variety GP1and in location 576D with cultivar class Medium Crown and variety GP1. The age of plants are 15 months of age. From each location 40 data has been taken by method of systematic random sampling. Than from each datum the plant weight (W) in kg, number of perfect leaves (NPL), the length of the longest leaf (LLL) in cm, and the width of the longest leaf (WLL) in cm are measured. From the analysis the plant weight best predicted by using variables NPL, LLL, and WLL in all locations.
format Article
author Usman, Mustofa
Elfaki, Faiz Ahmed Mohamed
Wamiliana, Wamiliana
Fauzan, Fauzan
Daoud, Jamal Ibrahim
author_facet Usman, Mustofa
Elfaki, Faiz Ahmed Mohamed
Wamiliana, Wamiliana
Fauzan, Fauzan
Daoud, Jamal Ibrahim
author_sort Usman, Mustofa
title Statistical model and prediction of pineapple plant weight
title_short Statistical model and prediction of pineapple plant weight
title_full Statistical model and prediction of pineapple plant weight
title_fullStr Statistical model and prediction of pineapple plant weight
title_full_unstemmed Statistical model and prediction of pineapple plant weight
title_sort statistical model and prediction of pineapple plant weight
publisher Sci.Int.(Lahore)
publishDate 2015
url http://irep.iium.edu.my/42862/
http://irep.iium.edu.my/42862/
http://irep.iium.edu.my/42862/1/Mustofa_Usman--SI.pdf
first_indexed 2023-09-18T21:01:05Z
last_indexed 2023-09-18T21:01:05Z
_version_ 1777410627663298560