Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials

Persamaan Kubik-Quintik Schrödinger Tak Linear adalah salah satu model matematik sejagat yang menghuraikan banyak permasalahan menarik dalam bidang fizik seperti fizik plasma, bahan fizik pekat, tekanan Bose–Einstein, optik tak linear dan lain-lain. Kertas kajian ini membincangkan penyebaran soliton...

Full description

Bibliographic Details
Main Authors: Aklana , Nor Amirah Busul, Umarov, Bakhram
Format: Conference or Workshop Item
Language:English
English
Published: AIP Publishing LLC 2014
Subjects:
Online Access:http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/6/SKSM22.pdf
http://irep.iium.edu.my/39994/10/39994.pdf
id iium-39994
recordtype eprints
spelling iium-399942017-06-15T01:40:07Z http://irep.iium.edu.my/39994/ Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials Aklana , Nor Amirah Busul Umarov, Bakhram QA Mathematics QC Physics Persamaan Kubik-Quintik Schrödinger Tak Linear adalah salah satu model matematik sejagat yang menghuraikan banyak permasalahan menarik dalam bidang fizik seperti fizik plasma, bahan fizik pekat, tekanan Bose–Einstein, optik tak linear dan lain-lain. Kertas kajian ini membincangkan penyebaran soliton bagi persamaan kubik-quintik Schrödinger tak linear terhadap potensi luar setempat. Kami telah mempraktikkan kaedah analisis anggaran, iaitu kaedah variasional untuk menerbitkan persamaan bagi evolusi parameter soliton semasa proses penyebaran. Kesahihan anggaran ini kemudiannya diuji oleh simulasi berangka langsung persamaan kubik-quintik Schrödinger tak linear dengan soliton yang pada mulanya terletak jauh dari potensi. Bagi kes potensi dalam bentuk fungsi Gaussian yang bergantung kepada halaju awal soliton, telah menunjukkan soliton berkemungkinan terpantul apabila bertembung dengan potensi, atau bergerak melepasinya. Nilai kritikal halaju yang memisahkan kedua-dua senario tersebut telah dikenal pasti. The Cubic-Quintic Nonlinear Schrödinger Equation (CQNLSE) is one of the universal mathematical models constituting many interesting problems in physics such as plasma physics, condensed matter physics, Bose–Einstein condensates, nonlinear optics, etc. This paper studies the scattering of the soliton of the CQNLSE on the localized external potential namely Gaussian potential. The approximate analytical method, also known as variational method has been applied in order to derive the equations for soliton parameters evolution during the scattering process. The validity of approximations was tested by direct numerical simulations of CQNLSE with soliton initially located far from potential. It was shown, in case of the potential in the form of Gaussian function, that depending on initial velocity of the soliton, the soliton may be reflected by potential or transmitted through it. The critical values of the velocity separating these two scenarios have been identified. AIP Publishing LLC 2014 Conference or Workshop Item NonPeerReviewed application/pdf en http://irep.iium.edu.my/39994/6/SKSM22.pdf application/pdf en http://irep.iium.edu.my/39994/10/39994.pdf Aklana , Nor Amirah Busul and Umarov, Bakhram (2014) Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials. In: Simposium Kebangsaan Sains Matematik Ke-22, 24th-26th November 2014, Shah Alam, Selangor. http://sksm22.um.edu.my/SKSM22 10.1063/1.4932431
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
English
topic QA Mathematics
QC Physics
spellingShingle QA Mathematics
QC Physics
Aklana , Nor Amirah Busul
Umarov, Bakhram
Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
description Persamaan Kubik-Quintik Schrödinger Tak Linear adalah salah satu model matematik sejagat yang menghuraikan banyak permasalahan menarik dalam bidang fizik seperti fizik plasma, bahan fizik pekat, tekanan Bose–Einstein, optik tak linear dan lain-lain. Kertas kajian ini membincangkan penyebaran soliton bagi persamaan kubik-quintik Schrödinger tak linear terhadap potensi luar setempat. Kami telah mempraktikkan kaedah analisis anggaran, iaitu kaedah variasional untuk menerbitkan persamaan bagi evolusi parameter soliton semasa proses penyebaran. Kesahihan anggaran ini kemudiannya diuji oleh simulasi berangka langsung persamaan kubik-quintik Schrödinger tak linear dengan soliton yang pada mulanya terletak jauh dari potensi. Bagi kes potensi dalam bentuk fungsi Gaussian yang bergantung kepada halaju awal soliton, telah menunjukkan soliton berkemungkinan terpantul apabila bertembung dengan potensi, atau bergerak melepasinya. Nilai kritikal halaju yang memisahkan kedua-dua senario tersebut telah dikenal pasti. The Cubic-Quintic Nonlinear Schrödinger Equation (CQNLSE) is one of the universal mathematical models constituting many interesting problems in physics such as plasma physics, condensed matter physics, Bose–Einstein condensates, nonlinear optics, etc. This paper studies the scattering of the soliton of the CQNLSE on the localized external potential namely Gaussian potential. The approximate analytical method, also known as variational method has been applied in order to derive the equations for soliton parameters evolution during the scattering process. The validity of approximations was tested by direct numerical simulations of CQNLSE with soliton initially located far from potential. It was shown, in case of the potential in the form of Gaussian function, that depending on initial velocity of the soliton, the soliton may be reflected by potential or transmitted through it. The critical values of the velocity separating these two scenarios have been identified.
format Conference or Workshop Item
author Aklana , Nor Amirah Busul
Umarov, Bakhram
author_facet Aklana , Nor Amirah Busul
Umarov, Bakhram
author_sort Aklana , Nor Amirah Busul
title Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
title_short Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
title_full Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
title_fullStr Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
title_full_unstemmed Penyebaran soliton bagi persamaan Persamaan Kubik-Quintik Schrödinger Tak Linear terhadap potensi luar = The soliton scattering of the Cubic-Quintic Nonlinear Schrödinger Equation on the external potentials
title_sort penyebaran soliton bagi persamaan persamaan kubik-quintik schrödinger tak linear terhadap potensi luar = the soliton scattering of the cubic-quintic nonlinear schrödinger equation on the external potentials
publisher AIP Publishing LLC
publishDate 2014
url http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/
http://irep.iium.edu.my/39994/6/SKSM22.pdf
http://irep.iium.edu.my/39994/10/39994.pdf
first_indexed 2023-09-18T20:57:24Z
last_indexed 2023-09-18T20:57:24Z
_version_ 1777410396174417920