Relative motion guidance, navigation and control for autonomous orbital rendezvous
In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss’ variational equations. The relative coordinate frame (Hill frame) is studied to describe the relative motion. A linear high fidelity model is developed to describe the relative...
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/38705/ http://irep.iium.edu.my/38705/ http://irep.iium.edu.my/38705/1/6%252E2011-6427.pdf |
id |
iium-38705 |
---|---|
recordtype |
eprints |
spelling |
iium-387052014-10-14T08:16:10Z http://irep.iium.edu.my/38705/ Relative motion guidance, navigation and control for autonomous orbital rendezvous Okasha, Mohamed Elsayed Aly Abd Elaziz Newman, Brett TA329 Engineering mathematics. Engineering analysis TA349 Mechanics of engineering. Applied mechanics TJ212 Control engineering In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss’ variational equations. The relative coordinate frame (Hill frame) is studied to describe the relative motion. A linear high fidelity model is developed to describe the relative motion. This model takes into account primary gravitational and atmospheric drag perturbations. In addition, this model is used in the design of a control, guidance, and navigation system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyros biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigations errors, trajectory dispersions, and attitude dispersions. 2011-08 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/38705/1/6%252E2011-6427.pdf Okasha, Mohamed Elsayed Aly Abd Elaziz and Newman, Brett (2011) Relative motion guidance, navigation and control for autonomous orbital rendezvous. In: AIAA Guidance, Navigation, and Control Conference, 8-11 August 2011, Portland, Oregon. http://arc.aiaa.org/doi/abs/10.2514/6.2011-6427 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English |
topic |
TA329 Engineering mathematics. Engineering analysis TA349 Mechanics of engineering. Applied mechanics TJ212 Control engineering |
spellingShingle |
TA329 Engineering mathematics. Engineering analysis TA349 Mechanics of engineering. Applied mechanics TJ212 Control engineering Okasha, Mohamed Elsayed Aly Abd Elaziz Newman, Brett Relative motion guidance, navigation and control for autonomous orbital rendezvous |
description |
In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss’ variational equations. The relative coordinate frame (Hill frame) is studied to describe the relative motion. A linear high fidelity model is developed to describe the relative motion. This model takes into account primary gravitational and atmospheric drag perturbations. In addition, this model is used in the design of a control, guidance, and navigation system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyros biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigations errors, trajectory dispersions, and attitude dispersions. |
format |
Conference or Workshop Item |
author |
Okasha, Mohamed Elsayed Aly Abd Elaziz Newman, Brett |
author_facet |
Okasha, Mohamed Elsayed Aly Abd Elaziz Newman, Brett |
author_sort |
Okasha, Mohamed Elsayed Aly Abd Elaziz |
title |
Relative motion guidance, navigation and control for autonomous orbital rendezvous |
title_short |
Relative motion guidance, navigation and control for autonomous orbital rendezvous |
title_full |
Relative motion guidance, navigation and control for autonomous orbital rendezvous |
title_fullStr |
Relative motion guidance, navigation and control for autonomous orbital rendezvous |
title_full_unstemmed |
Relative motion guidance, navigation and control for autonomous orbital rendezvous |
title_sort |
relative motion guidance, navigation and control for autonomous orbital rendezvous |
publishDate |
2011 |
url |
http://irep.iium.edu.my/38705/ http://irep.iium.edu.my/38705/ http://irep.iium.edu.my/38705/1/6%252E2011-6427.pdf |
first_indexed |
2023-09-18T20:55:38Z |
last_indexed |
2023-09-18T20:55:38Z |
_version_ |
1777410284838715392 |