An iteration problem

Let F stand for the feld of real or complex numbers, \phi : F^n\rightarrow F^n be any given polynomial map of the form \phi(x) = x + "higher order terms". We attach to it the following operator D : F[x]\rightarrow F[x] defined by D(f) = f-f\circle\phi, where F[x] = F[x_1; x_2; ...; x_n...

Full description

Bibliographic Details
Main Author: Bekbaev, Ural
Format: Article
Language:English
Published: Institute of Physics Publishing (UK) 2013
Subjects:
Online Access:http://irep.iium.edu.my/32609/
http://irep.iium.edu.my/32609/1/1742-6596_435_1_012007.pdf
id iium-32609
recordtype eprints
spelling iium-326092013-11-08T02:43:58Z http://irep.iium.edu.my/32609/ An iteration problem Bekbaev, Ural QA Mathematics Let F stand for the feld of real or complex numbers, \phi : F^n\rightarrow F^n be any given polynomial map of the form \phi(x) = x + "higher order terms". We attach to it the following operator D : F[x]\rightarrow F[x] defined by D(f) = f-f\circle\phi, where F[x] = F[x_1; x_2; ...; x_n]- the F-algebra of polynomials in variables x_1; x_2;...; x_n, f \in F[x] and \circle stands for the composition(superposition) operation. It is shown that trajectory of any f\in F[x] tends to zero, with respect to a metric, and stabilization of all trajectories is equivalent to the stabilization of trajectories of x_1; x_2;...; x_n. Institute of Physics Publishing (UK) 2013 Article PeerReviewed application/pdf en http://irep.iium.edu.my/32609/1/1742-6596_435_1_012007.pdf Bekbaev, Ural (2013) An iteration problem. Journal of Physics: Conference Series, 435. pp. 1-4. ISSN 1742-6588 (P), 1742-6596 (O)
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic QA Mathematics
spellingShingle QA Mathematics
Bekbaev, Ural
An iteration problem
description Let F stand for the feld of real or complex numbers, \phi : F^n\rightarrow F^n be any given polynomial map of the form \phi(x) = x + "higher order terms". We attach to it the following operator D : F[x]\rightarrow F[x] defined by D(f) = f-f\circle\phi, where F[x] = F[x_1; x_2; ...; x_n]- the F-algebra of polynomials in variables x_1; x_2;...; x_n, f \in F[x] and \circle stands for the composition(superposition) operation. It is shown that trajectory of any f\in F[x] tends to zero, with respect to a metric, and stabilization of all trajectories is equivalent to the stabilization of trajectories of x_1; x_2;...; x_n.
format Article
author Bekbaev, Ural
author_facet Bekbaev, Ural
author_sort Bekbaev, Ural
title An iteration problem
title_short An iteration problem
title_full An iteration problem
title_fullStr An iteration problem
title_full_unstemmed An iteration problem
title_sort iteration problem
publisher Institute of Physics Publishing (UK)
publishDate 2013
url http://irep.iium.edu.my/32609/
http://irep.iium.edu.my/32609/1/1742-6596_435_1_012007.pdf
first_indexed 2023-09-18T20:47:04Z
last_indexed 2023-09-18T20:47:04Z
_version_ 1777409745522524160