An iteration problem

Let F stand for the feld of real or complex numbers, \phi : F^n\rightarrow F^n be any given polynomial map of the form \phi(x) = x + "higher order terms". We attach to it the following operator D : F[x]\rightarrow F[x] defined by D(f) = f-f\circle\phi, where F[x] = F[x_1; x_2; ...; x_n...

Full description

Bibliographic Details
Main Author: Bekbaev, Ural
Format: Article
Language:English
Published: Institute of Physics Publishing (UK) 2013
Subjects:
Online Access:http://irep.iium.edu.my/32609/
http://irep.iium.edu.my/32609/1/1742-6596_435_1_012007.pdf
Description
Summary:Let F stand for the feld of real or complex numbers, \phi : F^n\rightarrow F^n be any given polynomial map of the form \phi(x) = x + "higher order terms". We attach to it the following operator D : F[x]\rightarrow F[x] defined by D(f) = f-f\circle\phi, where F[x] = F[x_1; x_2; ...; x_n]- the F-algebra of polynomials in variables x_1; x_2;...; x_n, f \in F[x] and \circle stands for the composition(superposition) operation. It is shown that trajectory of any f\in F[x] tends to zero, with respect to a metric, and stabilization of all trajectories is equivalent to the stabilization of trajectories of x_1; x_2;...; x_n.