Cutting temperature and surface roughness optimization in CNC end milling using multi objective genetic algorithm

Machining of hard materials at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality. Thus, developing a model for estimating the cutting parameters and optimizing this model to minimize the cutting temperatures and surface roughness becomes utmost im...

Full description

Bibliographic Details
Main Authors: Al Hazza, Muataz, Adesta, Erry Yulian Triblas, Superianto, M. Y., Riza, Muhammad
Format: Conference or Workshop Item
Language:English
Published: 2012
Subjects:
Online Access:http://irep.iium.edu.my/30208/
http://irep.iium.edu.my/30208/
http://irep.iium.edu.my/30208/1/06516365.pdf
Description
Summary:Machining of hard materials at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality. Thus, developing a model for estimating the cutting parameters and optimizing this model to minimize the cutting temperatures and surface roughness becomes utmost important to avoid any damage to the quality surface.This paper presents the development of new models and optimizing these models of machining parameters to minimize the cutting temperature in end milling process by integrating the genetic algorithm (GA) with the statistical approach. The mathematical models for the cutting temperature and surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Two objectives have been considered, minimum cutting temperature and minimum arithmetic mean roughness (Ra). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed