Optimization of EDM parameters for micro/meso fabrication

This paper discusses the possibility of micro/meso fabrication using conventional electrodischarged machining (EDM). Design of experiment (DOE) technique is used to optimize the process and to determine how the input parameters affect the fabrication in micro/meso scale. The selected input parameter...

Full description

Bibliographic Details
Main Authors: Ali, Mohammad Yeakub, Ammar, S. M., Baayah, N., Aishah, S., Zaliha, S., Hayati, N.
Format: Conference or Workshop Item
Language:English
Published: 2006
Subjects:
Online Access:http://irep.iium.edu.my/27175/
http://irep.iium.edu.my/27175/1/056_BSME-ASME_Dhaka_2006.pdf
id iium-27175
recordtype eprints
spelling iium-271752018-12-05T04:22:41Z http://irep.iium.edu.my/27175/ Optimization of EDM parameters for micro/meso fabrication Ali, Mohammad Yeakub Ammar, S. M. Baayah, N. Aishah, S. Zaliha, S. Hayati, N. T Technology (General) TJ Mechanical engineering and machinery TS Manufactures This paper discusses the possibility of micro/meso fabrication using conventional electrodischarged machining (EDM). Design of experiment (DOE) technique is used to optimize the process and to determine how the input parameters affect the fabrication in micro/meso scale. The selected input parameters are peak current, on-time and off-time. The responses are surface roughness and accuracy. The test micro/meso features were channels on stainless steel. The surface of the microchannels was inspected by using scanning electron microscope (SEM). The surface finish and accuracy were measured by Mitutoyo surface roughness tester and profile projector PJ-311 respectively. The data used in fabrication and obtained from the measurement were analyzed using DOE software. The results showed how the parameters greatly influence the surface quality and accuracy of the fabricated channel. It was observed that the combination of factor values of 2.1A peak current, 5 μs on-time and 10 μs off-time yields the optimum surface roughness 2.5 μm Ra and accuracy ±3%. The fabricated microchannles were further used in replication of polymer micro/meso components by hot embossing. 2006 Conference or Workshop Item NonPeerReviewed application/pdf en http://irep.iium.edu.my/27175/1/056_BSME-ASME_Dhaka_2006.pdf Ali, Mohammad Yeakub and Ammar, S. M. and Baayah, N. and Aishah, S. and Zaliha, S. and Hayati, N. (2006) Optimization of EDM parameters for micro/meso fabrication. In: 3rd BSME-ASME International Conference on Thermal Engineering, 20th-22nd December 2006, Dhaka, Bangladesh. (Unpublished)
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
topic T Technology (General)
TJ Mechanical engineering and machinery
TS Manufactures
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
TS Manufactures
Ali, Mohammad Yeakub
Ammar, S. M.
Baayah, N.
Aishah, S.
Zaliha, S.
Hayati, N.
Optimization of EDM parameters for micro/meso fabrication
description This paper discusses the possibility of micro/meso fabrication using conventional electrodischarged machining (EDM). Design of experiment (DOE) technique is used to optimize the process and to determine how the input parameters affect the fabrication in micro/meso scale. The selected input parameters are peak current, on-time and off-time. The responses are surface roughness and accuracy. The test micro/meso features were channels on stainless steel. The surface of the microchannels was inspected by using scanning electron microscope (SEM). The surface finish and accuracy were measured by Mitutoyo surface roughness tester and profile projector PJ-311 respectively. The data used in fabrication and obtained from the measurement were analyzed using DOE software. The results showed how the parameters greatly influence the surface quality and accuracy of the fabricated channel. It was observed that the combination of factor values of 2.1A peak current, 5 μs on-time and 10 μs off-time yields the optimum surface roughness 2.5 μm Ra and accuracy ±3%. The fabricated microchannles were further used in replication of polymer micro/meso components by hot embossing.
format Conference or Workshop Item
author Ali, Mohammad Yeakub
Ammar, S. M.
Baayah, N.
Aishah, S.
Zaliha, S.
Hayati, N.
author_facet Ali, Mohammad Yeakub
Ammar, S. M.
Baayah, N.
Aishah, S.
Zaliha, S.
Hayati, N.
author_sort Ali, Mohammad Yeakub
title Optimization of EDM parameters for micro/meso fabrication
title_short Optimization of EDM parameters for micro/meso fabrication
title_full Optimization of EDM parameters for micro/meso fabrication
title_fullStr Optimization of EDM parameters for micro/meso fabrication
title_full_unstemmed Optimization of EDM parameters for micro/meso fabrication
title_sort optimization of edm parameters for micro/meso fabrication
publishDate 2006
url http://irep.iium.edu.my/27175/
http://irep.iium.edu.my/27175/1/056_BSME-ASME_Dhaka_2006.pdf
first_indexed 2023-09-18T20:40:24Z
last_indexed 2023-09-18T20:40:24Z
_version_ 1777409326534623232